Citation: | ZHANG Wei, ZHANG Wenpu. Research on the Flow Field Distribution of Non-Circular Cross-Section Vessels Based on the Schwarz-Christoffel Transformation[J]. Applied Mathematics and Mechanics, 2021, 42(5): 470-480. doi: 10.21656/1000-0887.410267 |
[1] |
刘有军, 乔爱科. 血流动力学及其医学应用[J]. 医用生物力学, 2012,27(5): 475-480.(LIU Youjun, QIAO Aike. Hemodynamics and its medical application[J]. Journal of Medical Biomechanics,2012,27(5): 475-480.(in Chinese))
|
[2] |
TAYLOR C A, HUGHES T J R, ZARINS C K. Finite element modeling of blood flow in arteries[J]. Computer Methods in Applied Mechanics and Engineering,1998,158(1/2): 156-196.
|
[3] |
WEI Z A, HUDDLESTON C, TRUSTY P M, et al. Analysis of inlet velocity profiles in numerical assessment of fontan hemodynamics[J]. Annals of Biomedical Engineering,2019,47(11): 2258-2270.
|
[4] |
TORII R, MARIE OSHIMA M, TOSHIO KOBAYASHI T, et al. Fluid-structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes[J]. Computer Methods in Applied Mechanics and Engineering,2009,〖STHZ〗 198(45): 3613-3621.
|
[5] |
TEZDUYAR T E, SATHE S. Modelling of fluid-structure interactions with the space-time finite elements: solution techniques[J]. International Journal for Numerical Methods in Fluids,2007,54(6/8): 855-900.
|
[6] |
阚丽丽, 张文普, 王丽华. 基于CT影像的肺动脉及其分支血流动力学数值研究[J]. 浙江大学学报, 2010,39(6): 602-609.(KAN Lili, ZHANG Wenpu, WANG Lihua. Flow simulation of normal pulmonary artery branches based on CT image[J]. Journal of Zhejiang University(Medical Sciences),2010,39(6): 602-609.(in Chinese))
|
[7] |
崔建斌, 姬安召, 熊贵明. 基于Schwarz-Christoffel 变换的圆形隧道围岩应力分布特征研究[J]. 应用数学和力学, 2019,40(10): 1089-1098.(CUI Jianbin, JI Anzhao, XIONG Guiming. Research on surrounding rock stress distributions for circular tunnels based on the Schwarz-Christoffel transformation[J]. Applied Mathematics and Mechanics,2019,40(10): 1089-1098.(in Chinese))
|
[8] |
WANG Z G, LIAO T, WANG Y N. Modeling electric field of power metal-oxide-semiconductor field-effect transistor with dielectric trench based on Schwarz-Christoffel transformation[J]. Chinese Physics B,2019,28(5): 426-434.
|
[9] |
龙非池, 王慧. 〖JP2〗基于 Schwarz-Christoffel 变换的平板电容器电场电荷分布仿真[J]. 物理与工程, 2007,17(6): 25-27.(LONG Feichi, WANG Hui. Simulation on the distribution of electric field and charges of flat capacitor based on Schwarz-Christoffel transformation[J]. Physics and Engineering,2007,17(6): 25-27.(in Chinese))
|
[10] |
刘兴伟, 李星, 汪文帅. 一维六方压电准晶中正 n 边形孔边裂纹的反平面问题[J]. 应用数学与力学, 2020,41(7): 713-724.(LIU Xingwei, LI Xing, WANG Wenshuai. The anti-plane problem of regular n -polygon holes with radial edge cracks in 1D hexagonal piezoelectric quasicrystals[J]. Applied Mathematics and Mechanics,2020,41(7): 713-724.(in Chinese))
|
[11] |
张光生, 王玉风, 姬安召, 等. 基于Schwarz-Christoffel变换的曲流河井位映射计算[J]. 应用数学与力学, 2020,41(7): 771-785.(ZHANG Guangsheng, WANG Yufeng, JI Anzhao, et al. Mapping calculation of meandering river well locations based on the Schwarz-Christoffel transform[J]. Applied Mathematics and Mechanics,2020,41(7): 771-785.(in Chinese))
|
[12] |
TOBIN A D, LLOYD N T. Schwarz-Christoffel Mapping [M]. Cambridge: Cambridge University Press, 2002.
|
[13] |
李惜惜, 柳兆荣. 血流动力学原理和方法[M]. 上海: 复旦大学出版社, 1997.(LI Xixi, LIU Zhaorong. Principles and Methods of Hemodynamics [M]. Shanghai: Fudan University Press, 1997.(in Chinese))
|
[14] |
WOMERSLEY J R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known[J]. The Journal of Physiology,1955,127(3): 553-563.
|
[15] |
KU D N. Blood flow in arteries[J]. Annual Review of Fluid Mechanics,1997,29: 399-434.
|
[16] |
CHEN X P, ZHUANG J, WU Y H. The effect of Womersley number and particle radius on the accumulation of lipoproteins in the human aorta[J]. Computer Methods in Biomechanics and Biomedical Engineering,2020,23(10): 571-584.
|
[17] |
PRASHANTHA B, ANISH S. Discrete-phase modelling of an asymmetric stenosis artery under different Womersley numbers[J]. Arabian Journal for Science and Engineering,2019,44(2): 1001-1015.
|