Citation: | HU Yuda, LIU Chao. Double Resonance of Magnetism-Solid Coupling of in-Plane Moving Thin Plates With Linear Loads and Elastic Supports[J]. Applied Mathematics and Mechanics, 2021, 42(7): 713-722. doi: 10.21656/1000-0887.410202 |
DING H, LI Y, CHEN L Q. Nonlinear vibration of a beam with asymmetric elastic supports[J]. Nonlinear Dynamics,2019,95(3): 2543-2554.
|
[2]ZHANG Y F, DU J T, YANG T J, et al. A series solution for the in-plane vibration analysis of orthotropic rectangular plates with elastically restrained edges[J]. International Journal of Mechanical Sciences,2014,79: 15-24.
|
[3]GORMAN D J. Exact solutions for the free in-plane vibration of rectangular plates with two opposite edges simply supported[J]. Journal of Sound and Vibration,2006,294(1): 131-161.
|
[4]CHEN Y H, JIN G Y, LIU Z G. Flexural and in-plane vibration analysis of elastically restrained thin rectangular plate with cutout using Chebyshev-Lagrangian method[J]. International Journal of Mechanical Sciences,2014,89: 264-278.
|
[5]DOZIO L. Free in-plane vibration analysis of rectangular plates with arbitrary elastic boundaries[J]. Mechanics Research Communications,2010,37(7): 627-635.
|
[6]ZHANG Y F, DU J T, YANG T J, et al. Free and forced in-plane vibration of rectangular plates with non-uniform elastic boundary conditions[J]. Noise Control Engineering Journal,2015,63(6): 508-521.
|
[7]闫维明, 石鲁宁, 何浩祥, 等. 完全弹性支承变截面梁动力特性半解析解[J]. 振动与冲击, 2015,34(14): 76-84.(YAN Weiming, SHI Luning, HE Haoxiang, et al. Semi-analytical solution for the dynamic characteristics of a fully elastically supported variable-section beam[J]. Vibration and Shock,2015,34(14): 76-84.(in Chinese))
|
[8]胡宇达. 轴向运动导电薄板磁弹性耦合动力学理论模型[J]. 固体力学学报, 2013,34(4): 417-425.(HU Yuda. A theoretical model of magnetoelastic coupling dynamics for axial moving conductive thin plate[J]. Journal of Solid Mechanics,2013,34(4): 417-425.(in Chinese))
|
[9]DING H, HUANG L L, MAO X Y, et al. Primary resonance of traveling viscoelastic beam under internal resonance[J]. Applied Mathematics and Mechanics (English Edition),2017,38(1): 1-14.
|
[10]HU Y D, WANG J. Principal-internal resonance of an axially moving current-carrying beam in magnetic field[J]. Nonlinear Dynamics,2017,90(1): 683-695.
|
[11]戎艳天, 胡宇达. 移动载荷作用下轴向运动载流梁的参强联合共振[J]. 应用数学和力学, 2018,39(3): 266-277.(RONG Yantian, HU Yuda. Combined parametric and forced resonance of axially moving and current-carrying beams under moving loads[J]. Applied Mathematics and Mechanics,2018,39(3): 266-277.(in Chinese))
|
[12]YANG S W, ZHANG W, HAO Y X, et al. Nonlinear vibrations of FGM truncated conical shell under aerodynamics and in-plane force along meridian near internal resonances[J]. Thin-Walled Structures,2019,142: 369-391.
|
[13]胡宇达, 胡朋. 轴向运动导电板磁弹性非线性动力学及分岔特性[J]. 计算力学学报, 2014,31(2): 180-186.(HU Yuda, HU Peng. Nonlinear dynamics and bifurcation characteristics of axially moving conductive plates[J]. Journal of Computational Mechanics,2014,31(2): 180-186.(in Chinese))
|
[14]TANG Y Q, CHEN L Q. Stability analysis and numerical confirmation in parametric resonance of axially moving viscoelastic plates with time-dependent speed[J]. European Journal of Mechanics A: Solids,2013,37: 106-121.
|
[15]CHEN S H, HUANG J L, SZE K Y. Multidimensional Lindstedt-Poincaré method for nonlinear vibration of axially moving beams[J]. Journal of Sound & Vibration,2007,306(1): 1-11.
|
[16]LI H Y, LANG T Y, LIU Y J, et al. Nonlinear vibrations and stability of an axially moving plate immersed in fluid[J]. Acta Mechanica Solida Sinica,2019,32(6): 737-753.
|
[17]KRZYSZTOF M, JULIUSZ G. Dynamic analysis of an axially moving plate subjected to thermal loading[J]. Mechanics Research Communications,2013,51: 67-71.
|
[18]JAROSAW L, JERZY W. Nonlinear vibrations of a rotating thin-walled composite piezo-beam with circumferentially uniform stiffness (CUS)[J]. Nonlinear Dynamics,2019,98(3): 2509-2529.
|
[19]MURILLO V B S, PAULO B G, RICARDO A M S. Nonlinear oscillations and dynamic stability of an elastoplastic pyramidal truss[J]. Nonlinear Dynamics, 2019,98(4): 2847-2877.
|
[20]NAYFEH A H, MOOK D T. Nonlinear Oscillations[M]. New York: John Wiley & Sons, 1979.
|