Citation: | ZHENG Mingliang, LIU Jie, DENG Bin. The Noether Symmetry and Conserved Quantity of Galloping Iced Power Transmission Lines[J]. Applied Mathematics and Mechanics, 2021, 42(3): 275-281. doi: 10.21656/1000-0887.410189 |
[1] |
李新民, 朱宽军, 李军辉. 输电线路舞动分析及防治方法研究进展[J]. 高电压技术, 2011,37(2): 484-490.(LI Xinmin, ZHU kuanjun, LI Junhui. Research progress of transmission line galloping analysis and control method[J]. High Voltage Engineering,2011,37(2): 484-490.(in Chinese))
|
[2] |
楼文娟, 杨伦, 潘小涛. 覆冰导线舞动的非线性动力学及参数分析[J]. 土木工程学报, 2014,47(5): 27-35.(LOU Wenjuan, YANG Lun, PAN Xiaotao. Nonlinear dynamics and parametric analysis for galloping response of iced conductor[J]. China Civil Engineering Journal,2014,47(5): 27-35.(in Chinese))
|
[3] |
WANG Y, LU L, HUANG L. Nonlinear vibration analysis for an airflow-excited translating string[J]. International Journal of Computational Methods,2012,9(4): 1-9.
|
[4] |
LU M L, POPPLEWELL N, SHAH A H, et al. Hybrid nutation damper for controlling galloping power lines[J]. IEEE Transactions on Power Delivery,2007,22(1): 450-456.
|
[5] |
陈晓明, 邓洪洲, 王肇民. 大跨越输电线路舞动稳定性研究[J]. 工程力学, 2004,21(1): 56-60.(CHEN Xiaoming, DENG Hongzhou, WANG Zhaomin. Conductor galloping stability analysis of long-span transmission system[J]. Engineering Mechanics,2004,21(1): 56-60.(in Chinese))
|
[6] |
白海峰, 李宏男. 分裂式覆冰导线横风弛振响应研究[J]. 振动工程学报, 2008,21(3): 298-303.(BAI Haifeng, LI Hongnan. Crosswind-induced galloping of iced-bundle conductors[J]. Journal of Vibration Engineering,2008,21(3): 298-303.(in Chinese))
|
[7] |
刘海英, 张琪昌, 郝淑英. 覆冰四分裂输电线舞动研究[J]. 振动工程学报, 2011,24(3): 235-239.(LIU Haiying, ZHANG Qichang, HAO Shuying. A study on galloping for iced quad-bundled conductor[J]. Journal of Vibration Engineering,2011,24(3): 235-239.(in Chinese))
|
[8] |
刘延柱, 陈立群. 非线性振动[M]. 北京: 高等教育出版社, 2001.(LIU Yanzhu, CHEN Liqun. Nonlinear Vibration [M]. Beijing: Higher Education Press, 2001.(in Chinese))
|
[9] |
陈树辉. 强非线性振动系统的定量分析方法[M]. 北京: 科学出版社, 2007.(CHEN Shuhui. Quantitative Analysis Method of Strong Nonlinear Vibration System [M]. Beijing: Science Press, 2007.(in Chinese))
|
[10] |
田畴. 李群及其在微分方程中的应用[M]. 北京: 科学出版社, 2003.(TIAN Chou. Lie Group and Its Application in Differential Equation [M]. Beijing: Science Press, 2003.(in Chinese))
|
[11] |
梅凤翔. 李群和李代数对约束力学系统的应用[M]. 北京: 科学出版社, 1999.(MEI Fengxiang. Application of Lie Group and Lie Algebra to Constrained Mechanical System [M]. Beijing: Science Press, 1999.(in Chinese))
|
[12] |
IBRAGIMOV N H. 微分方程和数学物理问题[M]. 卢琦, 杨凯, 胡享平, 译. 北京: 高等教育出版社, 2013.(IBRAGIMOV N H. A Practical Course in Differential Equations and Mathematical Modelling [M]. LU Qi, YANG Kai, HU Xiangping, transl. Beijing: Higher Education Press, 2013.(in Chinese))
|
[13] |
ZHANG Y. Fractional differential equations of motion in terms of combined Riemann-Liouville derivatives[J]. Chinese Physics B,2012,21(8): 48-52.
|
[14] |
崔新斌, 傅景礼. 汽车电磁悬架系统的Noether对称性及其应用[J]. 应用数学和力学, 2017,〖STHZ〗 38(12): 1331-1341.(CUI Xinbin, FU Jingli. Noether symmetry of automotive electromagnetic suspension systems and its application[J]. Applied Mathematics and Mechanics, 2017,38(12): 1331-1341.(in Chinese))
|
[15] |
郑明亮, 冯鲜, 李文霞. 机械多体系统碰撞动力学的对称性和守恒量研究[J]. 应用数学和力学, 2018,39(11): 1292-1299.(ZHENG Mingliang, FENG Xian, LI Wenxia, et al. Study on symmetries and conserved quantities of mechanical multibody system collision dynamics[J]. Applied Mathematics and Mechanics,2018,39(11): 1292-1299.(in Chinese))
|
[16] |
梅凤翔. 分析力学: 下卷[M]. 北京: 科学出版社, 2013.(MEI Fengxiang. Analytical Mechanics: Vol 〖STBX〗2 [M]. Beijing: Science Press, 2013.(in Chinese))
|
[17] |
YU P, DESAI Y M, POPPLEWELL N, et al. Three-degree-of-freedom model for galloping, part Ⅱ: solutions[J]. Journal of Engineering Mechanics, ASCE,1993,119(12): 2426-2448.
|
[18] |
吴娇娇. Hamihon方程保能量数值方法的研究[D]. 硕士学位论文. 北京: 北京交通大学, 2017.(WU Jiaojiao. The research of energy-preserving numerical methods for Hamilton equations[D]. Master Thesis. Beijing: Beijing Jiaotong University, 2017.(in Chinese))
|