Volume 42 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
ZHENG Mingliang, LIU Jie, DENG Bin. The Noether Symmetry and Conserved Quantity of Galloping Iced Power Transmission Lines[J]. Applied Mathematics and Mechanics, 2021, 42(3): 275-281. doi: 10.21656/1000-0887.410189
Citation: ZHENG Mingliang, LIU Jie, DENG Bin. The Noether Symmetry and Conserved Quantity of Galloping Iced Power Transmission Lines[J]. Applied Mathematics and Mechanics, 2021, 42(3): 275-281. doi: 10.21656/1000-0887.410189

The Noether Symmetry and Conserved Quantity of Galloping Iced Power Transmission Lines

doi: 10.21656/1000-0887.410189
  • Received Date: 2020-06-20
  • Rev Recd Date: 2020-07-27
  • Publish Date: 2021-03-01
  • To overcome the non-structure-preserving drawbacks in traditional numerical simulation of transmission-line nonlinear vibration responses, the Noether symmetry and conserved quantity of transmission lines’ 2-way galloping under ice and wind excitation were studied. Firstly, in view of the nonlinearity of the aerodynamic force and the line geometry, a 2-DOF galloping model of vertical and torsional vibrations was established based on the analytical mechanics method. Secondly, the group analysis theory was introduced, and the condition and the conserved quantity of the Noether symmetry were given according to the invariance principle. Finally, a conserved quantity-preserving discrete numerical algorithm was constructed. The dynamic characteristics of the nonlinear mechanical structure were studied with the Noether symmetry theory. The results show that, the proposed novel method is structure-preserving in a wide range of application, and is reliable and accurate.
  • loading
  • [1]
    李新民, 朱宽军, 李军辉. 输电线路舞动分析及防治方法研究进展[J]. 高电压技术, 2011,37(2): 484-490.(LI Xinmin, ZHU kuanjun, LI Junhui. Research progress of transmission line galloping analysis and control method[J]. High Voltage Engineering,2011,37(2): 484-490.(in Chinese))
    [2]
    楼文娟, 杨伦, 潘小涛. 覆冰导线舞动的非线性动力学及参数分析[J]. 土木工程学报, 2014,47(5): 27-35.(LOU Wenjuan, YANG Lun, PAN Xiaotao. Nonlinear dynamics and parametric analysis for galloping response of iced conductor[J]. China Civil Engineering Journal,2014,47(5): 27-35.(in Chinese))
    [3]
    WANG Y, LU L, HUANG L. Nonlinear vibration analysis for an airflow-excited translating string[J]. International Journal of Computational Methods,2012,9(4): 1-9.
    [4]
    LU M L, POPPLEWELL N, SHAH A H, et al. Hybrid nutation damper for controlling galloping power lines[J]. IEEE Transactions on Power Delivery,2007,22(1): 450-456.
    [5]
    陈晓明, 邓洪洲, 王肇民. 大跨越输电线路舞动稳定性研究[J]. 工程力学, 2004,21(1): 56-60.(CHEN Xiaoming, DENG Hongzhou, WANG Zhaomin. Conductor galloping stability analysis of long-span transmission system[J]. Engineering Mechanics,2004,21(1): 56-60.(in Chinese))
    [6]
    白海峰, 李宏男. 分裂式覆冰导线横风弛振响应研究[J]. 振动工程学报, 2008,21(3): 298-303.(BAI Haifeng, LI Hongnan. Crosswind-induced galloping of iced-bundle conductors[J]. Journal of Vibration Engineering,2008,21(3): 298-303.(in Chinese))
    [7]
    刘海英, 张琪昌, 郝淑英. 覆冰四分裂输电线舞动研究[J]. 振动工程学报, 2011,24(3): 235-239.(LIU Haiying, ZHANG Qichang, HAO Shuying. A study on galloping for iced quad-bundled conductor[J]. Journal of Vibration Engineering,2011,24(3): 235-239.(in Chinese))
    [8]
    刘延柱, 陈立群. 非线性振动[M]. 北京: 高等教育出版社, 2001.(LIU Yanzhu, CHEN Liqun. Nonlinear Vibration [M]. Beijing: Higher Education Press, 2001.(in Chinese))
    [9]
    陈树辉. 强非线性振动系统的定量分析方法[M]. 北京: 科学出版社, 2007.(CHEN Shuhui. Quantitative Analysis Method of Strong Nonlinear Vibration System [M]. Beijing: Science Press, 2007.(in Chinese))
    [10]
    田畴. 李群及其在微分方程中的应用[M]. 北京: 科学出版社, 2003.(TIAN Chou. Lie Group and Its Application in Differential Equation [M]. Beijing: Science Press, 2003.(in Chinese))
    [11]
    梅凤翔. 李群和李代数对约束力学系统的应用[M]. 北京: 科学出版社, 1999.(MEI Fengxiang. Application of Lie Group and Lie Algebra to Constrained Mechanical System [M]. Beijing: Science Press, 1999.(in Chinese))
    [12]
    IBRAGIMOV N H. 微分方程和数学物理问题[M]. 卢琦, 杨凯, 胡享平, 译. 北京: 高等教育出版社, 2013.(IBRAGIMOV N H. A Practical Course in Differential Equations and Mathematical Modelling [M]. LU Qi, YANG Kai, HU Xiangping, transl. Beijing: Higher Education Press, 2013.(in Chinese))
    [13]
    ZHANG Y. Fractional differential equations of motion in terms of combined Riemann-Liouville derivatives[J]. Chinese Physics B,2012,21(8): 48-52.
    [14]
    崔新斌, 傅景礼. 汽车电磁悬架系统的Noether对称性及其应用[J]. 应用数学和力学, 2017,〖STHZ〗 38(12): 1331-1341.(CUI Xinbin, FU Jingli. Noether symmetry of automotive electromagnetic suspension systems and its application[J]. Applied Mathematics and Mechanics, 2017,38(12): 1331-1341.(in Chinese))
    [15]
    郑明亮, 冯鲜, 李文霞. 机械多体系统碰撞动力学的对称性和守恒量研究[J]. 应用数学和力学, 2018,39(11): 1292-1299.(ZHENG Mingliang, FENG Xian, LI Wenxia, et al. Study on symmetries and conserved quantities of mechanical multibody system collision dynamics[J]. Applied Mathematics and Mechanics,2018,39(11): 1292-1299.(in Chinese))
    [16]
    梅凤翔. 分析力学: 下卷[M]. 北京: 科学出版社, 2013.(MEI Fengxiang. Analytical Mechanics: Vol 〖STBX〗2 [M]. Beijing: Science Press, 2013.(in Chinese))
    [17]
    YU P, DESAI Y M, POPPLEWELL N, et al. Three-degree-of-freedom model for galloping, part Ⅱ: solutions[J]. Journal of Engineering Mechanics, ASCE,1993,119(12): 2426-2448.
    [18]
    吴娇娇. Hamihon方程保能量数值方法的研究[D]. 硕士学位论文. 北京: 北京交通大学, 2017.(WU Jiaojiao. The research of energy-preserving numerical methods for Hamilton equations[D]. Master Thesis. Beijing: Beijing Jiaotong University, 2017.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1167) PDF downloads(494) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return