Citation: | ZHANG Maolin, RAN Jing, ZHANG Shougui. A Self-Adaptive Uzawa Block Relaxation Method for Stokes Problems With Slip Boundary Conditions[J]. Applied Mathematics and Mechanics, 2021, 42(2): 188-198. doi: 10.21656/1000-0887.410170 |
[1] |
黄鹏展, 何银年, 冯新龙. 解Stokes特征值问题的一种两水平稳定化有限元方法[J]. 应用数学和力学, 2012,33(5): 588-597.(HUANG Pengzhan, HE Yinnian, FENG Xinlong. A two-level stabilized finite element method for the Stokes eigenvalue problem[J]. Applied Mathematics and Mechanics,2012,33(5): 588-597.(in Chinese))
|
[2] |
SHI D Y, PEI L F. Superconvergence of nonconforming finite element penalty scheme for Stokes problem using L2 projection method[J]. Applied Mathematics and Mechanics (English Edition),2013,34(7): 861-874.
|
[3] |
FUJITA H. A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions[J]. RIMS Kkyroku,1994,888(1): 199-216.
|
[4] |
SAITO N. On the Stokes equation with the leak and slip boundary conditions of friction type: regularity of solutions[J]. Publications of the Research Institute for Mathematical Sciences,2004,40(2): 345-383.
|
[5] |
LI Y, LI K T. Uzawa iteration method for Stokes type variational inequality of the second kind[J]. Acta Mathematicae Applicatae Sinica(English Series),2011,27(2): 303-316.
|
[6] |
KASHIWABARA T. On a finite element approximation of the Stokes problem under leak or slip boundary conditions of friction type[J]. Japan Journal of Industrial and Applied Mathematics,2013,30(1): 227-261.
|
[7] |
JING F F, LI J, YAN W J. Discontinuous Galerkin methods for a stationary Navier-Stokes problem with a nonlinear slip boundary condition of friction type[J]. Applied Mathematics Letters,2017,73(2): 113-119.
|
[8] |
周康瑞, 尚月强. 带非线性滑移边界条件的Stokes方程的一种并行有限元算法[J]. 西南师范大学学报(自然科学版), 2020,45(5): 32-38.(ZHOU Kangrui, SHANG Yueqiang. A parallel finite element algorithm for Stokes equations with nonlinear slip boundary conditions[J]. Journal of Southwest China Normal University (Natural Science Edition),2020,45(5): 32-38.(in Chinese))
|
[9] |
饶玲. 单调迭代结合虚拟区域法求解非线性障碍问题[J]. 应用数学和力学, 2018,39(4): 485-492.(RAO Ling. Monotone iterations combined with fictitious domain methods for numerical solution of nonlinear obstacle problems[J]. Applied Mathematics and Mechanics,2018,39(4): 485-492.(in Chinese))
|
[10] |
GLOWINSKI R. Numerical Methods for Nonlinear Variational Problems [M]. Berlin: Springer-Verlag, 2008.
|
[11] |
KOKO J. Uzawa block relaxation method for the unilateral contact problem[J]. Journal of Computational and Applied Mathematics,2011,235(8): 2343-2356.
|
[12] |
DJOKO J K, KOKO J. Numerical methods for the Stokes and Navier-Stokes equations driven by threshold slip boundary conditions[J]. Computer Methods in Applied Mechanics and Engineering,2016,305(15): 936-958.
|
[13] |
王光辉, 王烈衡. 基于对偶混合变分形式的Uzawa型算法[J]. 应用数学和力学, 2002,23(7): 682-688.(WANG Guanghui, WANG Lieheng. Uzawa type algorithm based on dual mixed variational formulation[J]. Applied Mathematics and Mechanics,2002,23(7): 682-688.(in Chinese))
|
[14] |
HE B S. Self-adaptive operator splitting methods for monotone variational inequalities[J]. Numerische Mathematik,2013,94(4): 715-737.
|
[15] |
郭楠馨, 张守贵. 自由边界问题的自适应Uzawa块松弛算法[J]. 应用数学和力学, 2019,40(6): 682-693.(GUO Nanxin, ZHANG Shougui. A self-adaptive Uzawa block relaxation algorithm for free boundary problems[J]. Applied Mathematics and Mechanics,2019,40(6): 682-693. (in Chinese))
|
[16] |
ZHANG S G. Projection and self-adaptive projection methods for the Signorini problem the BEM[J]. Applied Mathematics and Computation,2017,74(6): 1262-1273.
|
[17] |
ZHANG S G, LI X L. A self-adaptive projection method for contact problems with the BEM[J]. Applied Mathematical Modelling,2018,55: 145-159.
|