Volume 42 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
LIU Jing, YAO Qishui, YANG Wen, ZHOU Fenglin, YU Jianghong. An Iterated Sinh-Sigmoidal Combined Transformation Method for Calculating Nearly Singular Integrals of Boundary Elements[J]. Applied Mathematics and Mechanics, 2021, 42(4): 385-393. doi: 10.21656/1000-0887.410167
Citation: LIU Jing, YAO Qishui, YANG Wen, ZHOU Fenglin, YU Jianghong. An Iterated Sinh-Sigmoidal Combined Transformation Method for Calculating Nearly Singular Integrals of Boundary Elements[J]. Applied Mathematics and Mechanics, 2021, 42(4): 385-393. doi: 10.21656/1000-0887.410167

An Iterated Sinh-Sigmoidal Combined Transformation Method for Calculating Nearly Singular Integrals of Boundary Elements

doi: 10.21656/1000-0887.410167
Funds:  The National Natural Science Foundation of China(11602082)
  • Received Date: 2020-06-10
  • Rev Recd Date: 2020-07-17
  • Publish Date: 2021-04-01
  • Accurate and effective elimination of the near singularity of integrals is the primary problem in engineering application of 3D BEM. Nearly singular integrals will appear when the distance between source points and the triangle integral element approaches zero indefinitely. The shape of the integral element and the position of the projection points are both important factors influencing the computation accuracy of nearly singular integrals. Most of the existing nonlinear transformation methods only focus on the near singularity of integrals in the radial direction, ignoring the angular direction and the shape of triangular integral elements, so the calculation accuracy is always unsatisfactory and very sensitive to the shape of the integral elements of subtriangles in the case of projection points near the boundary. An improved iterated sinhsigmoidal combined transformation method based on the adaptive partitioning technology and different coordinate transformations was proposed to eliminate the near singularity of integrals in radial and angular directions respectively, which can greatly reduce the calculation scale while ensuring the calculation accuracy. Numerical examples were presented to verify the proposed method.
  • loading
  • [1]
    张耀明, 谷岩, 陈正宗. 位势边界元法中边界层效应与薄体结构[J]. 力学学报, 2010,〖STHZ〗 42(2): 219-227.(ZHANG Yaoming, GU Yan, CHEN Zhengzong. Boundary layer effect and thin body structure in bem for potential problems[J]. Chinese Journal of Theoretical and Applied Mechanics,2010,42(2): 219-227.(in Chinese))
    [2]
    张耀明, 吕和祥, 王利民. 位势平面问题的新的规则化边界积分方程[J]. 应用数学和力学, 2006,〖STHZ〗 27(9): 1017-1022.(ZHANG Yaoming, L Hexiang, WANG Limin. Novel regularized boundary integral equations for potential plane problems[J]. Applied Mathematics and Mechanics,2006,27(9): 1017-1022.(in Chinese))
    [3]
    刘从建, 陈文, 王海涛, 等. 自适应快速多极正则化无网格法求解大规模三维位势问题[J]. 应用数学和力学, 2013,34(3): 259-271.(LIU Congjian, CHEN Wen, WANG Haitao, et al. Adaptive fast multipole regularized meshless method for large-scale three dimensional potential problems[J]. Applied Mathematics and Mechanics,2013,34(3): 259-271.(in Chinese))
    [4]
    SHAVLAKADZE N. The boundary contact problem of electroelasticity and related integral differential equations[J]. Transactions of A. Razmadze Mathematical Institute,2016,170(1): 107-113.
    [5]
    郭钊, 郭子涛, 易玲艳. 多裂纹问题计算分析的本征COD边界积分方程方法[J]. 应用数学和力学, 2019,40(2): 200-209.(GUO Zhao, GUO Zitao, YI Lingyan. Analysis of multicrack problems with eigen COD boundary integral equations[J]. Applied Mathematics and Mechanics,2019,40(2): 200-209.(in Chinese))
    [6]
    李善德, 黄其柏, 张潜. 快速多极边界元方法在大规模声学问题中的应用[J]. 机械工程学报, 2011,47(7): 82-89.(LI Shande, HUANG Qibai, ZHANG Qian. Application of fast multipole boundary element method for large-scale acoustic problems[J]. Journal of Mechanical Engineering,2011,47(7): 82-89.(in Chinese))
    [7]
    李珺璞, 傅卓佳, 陈文. 奇异边界法分析含水下障碍物水域中的水波传播问题[J]. 应用数学和力学, 2015,36(10): 1035-1044.(LI Junpu, FU Zhuojia, CHEN Wen. The singular boundary method for obliquely incident water wave passing a submerged breakwater[J]. Applied Mathematics and Mechanics,2015,36(10): 1035-1044.(in Chinese))
    [8]
    ZHANG J M, WANG P, LU C J, et al. A spherical element subdivision method for the numerical evaluation of nearly singular integrals in 3D BEM[J]. Engineering Computation,2017,34(6): 2074-2087.
    [9]
    傅卓佳. 波传播问题的半解析无网格边界配点法[D]. 博士学位论文. 南京: 河海大学, 2013.(FU Zhuojia. Semi-analytical meshless boundary collocation methods for wave propagation problems[D]. PhD Thesis. Nanjing: Hohai University, 2013.(in Chinese))
    [10]
    XIE G, ZHANG J, DONG Y, et al. An improved exponential transformation for nearly singular boundary element integrals in elasticity problems[J]. International Journal of Solids and Structures,2014,51(6): 1322-1329.
    [11]
    LV J H, JIAO Y Y, FENG X T, et al. A series of Duffy-distance transformation for integrating 2D and 3D vertex singularities[J]. International Journal of Numerical Methods in Engineering,2019,118: 38-60.
    [12]
    LI X C, ZHANG Y, GONG Y, et al. Use of the sinh transformation for evaluating 2D nearly singular integrals in 3D BEM[J]. Acta Mechanica,2015,226(9): 2873-2885.
    [13]
    TAN F, JIAO Y Y, LV J H. Conformal distance-sigmoidal transformation for evaluating 3D nearly singular integrals over triangular elements[J]. Engineering Analysis With Boundary Elements,2018,89: 1-9.
    [14]
    JOHNSTON P R, JOHNSTON B M, ELLIOTT D. Using the iterated sinh transformation to evaluate two dimensional nearly singular boundary element integrals[J]. Engineering Analysis With Boundary Elements,2013,37(4): 708-718.
    [15]
    NAGARAJAN A, MUKHERJEE S. A mapping method for numerical evaluation of two-dimensional integrals with 1/ r singularity[J]. Computational Mechanics,1993,12: 19-26.
    [16]
    周枫林, 谢贵重, 张见明, 等. 角度-距离复合变换法消除边界积分方程近奇异性[J]. 应用数学和力学, 2020,41(5): 530-540.(ZHOU Fenling, XIE Guizhong, ZHANG Jianming, et al. Near-singularity cancellation with the angle-distance transformation method for boundary integral equations[J]. Applied Mathematics and Mechanics,2020,41(5): 530-540.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1443) PDF downloads(394) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return