Volume 42 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
PENG Yong, ZHOU Xin, SONG Qiankun, XIANG Zhonghua. A Combined Predicting Model for Expressway Travel Time Based on EMD-GRU[J]. Applied Mathematics and Mechanics, 2021, 42(4): 405-412. doi: 10.21656/1000-0887.410165
Citation: PENG Yong, ZHOU Xin, SONG Qiankun, XIANG Zhonghua. A Combined Predicting Model for Expressway Travel Time Based on EMD-GRU[J]. Applied Mathematics and Mechanics, 2021, 42(4): 405-412. doi: 10.21656/1000-0887.410165

A Combined Predicting Model for Expressway Travel Time Based on EMD-GRU

doi: 10.21656/1000-0887.410165
  • Received Date: 2020-06-08
  • Rev Recd Date: 2020-06-15
  • Publish Date: 2021-04-01
  • In view of the variety of influential factors on the expressway travel time and the significance of nonlinear and non-stationary characteristics of the travel time series, a combined expressway travel time predicting model was designed based on the empirical mode decomposition and the GRU neural network. First, the time information of vehicles entering and exiting the expressway in toll data was used to obtain the travel time series of the road segments; then, the empirical mode decomposition algorithm was applied to decompose the complex travel time series into a number of relatively stable and different-time-scale eigen modal function components as well as residual components; then, the GRU neural network was used to predict and integrate the intrinsic modal function components and residual components. The example analysis shows that, the empirical mode decomposition can effectively improve the prediction accuracy of the LSTM and the GRU neural networks; under the same parameter settings, the prediction accuracy of the GRU neural network is better than that of the LSTM neural network.
  • loading
  • [1]
    ABDOLLAHI M, KHALEGHI T, YANG K. An integrated feature learning approach using deep learning for travel time prediction[J]. Expert Systems With Applications,2020,139: 112864.
    [2]
    赵建东, 王浩, 刘文辉. 高速公路旅行时间的自适应插值卡尔曼滤波预测[J]. 华南理工大学学报(自然科学版), 2014,42(2): 109-115.(ZHAO Jiandong, WANG Hao, LIU Wenhui. Adaptive interpolation Kalman filter prediction of highway travel time[J]. Journal of South China University of Technology (Natural Science Edition),2014,42(2): 109-115.(in Chinese))
    [3]
    孙健, 张纯, 陈书恺, 等. 基于季节模型及Kalman滤波的道路行程时间[J]. 长安大学学报(自然科学版), 2014,34(6): 145-151.(SUN Jian, ZHANG Chun, CHEN Shukai, et al. Road travel time based on seasonal model and Kalman filtering[J]. Journal of Chang’an University (Natural Science Edition),2014,34(6): 145-151.(in Chinese))
    [4]
    张娟, 孙剑. 基于SVM的城市快速路行程时间预测研究[J]. 交通运输系统工程与信息, 2011,11(2): 174-179.(ZHANG Juan, SUN Jian. Prediction of urban expressway travel time based on SVM[J]. Transportation System Engineering and Information,2011,11(2): 174-179.(in Chinese))
    [5]
    李松江, 宋军芬, 杨华民, 等. 基于聚类分析的高速公路行程时间预测[J]. 计算机仿真, 2019,36(2): 384-389.(LI Songjiang, SONG Junfen, YANG Huamin, et al. Travel time prediction of freeway based on clustering analysis[J]. Computer Simulation,2019,36(2): 384-389.(in Chinese))
    [6]
    王翔, 陈小鸿, 杨祥妹. 基于K最近邻算法的高速公路短时行程时间预测[J]. 中国公路学报, 2015,28(1): 102-111.(WANG Xiang, CHEN Xiaohong, YANG Xiangmei. Prediction of expressway short-term travel time based on K nearest neighbor algorithm[J]. Chinese Journal of Highway and Transport,2015,28(1): 102-111.(in Chinese))
    [7]
    WANG J, TSAPAKIS I, ZHONG C. A space-time delay neural network model for travel time prediction[J]. Engineering Applications of Artificial Intelligence,2016,52(6): 145-160.
    [8]
    GOODFELLOW I, BENGIO Y, COURVILLE A. Deep Learning [M]. Cambridge, MA: MIT Press, 2016.
    [9]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8): 1735-1780.
    [10]
    张威威, 李瑞敏, 谢中教. 基于深度学习的城市道路旅行时间预测[J]. 系统仿真学报, 2017,29(10): 2309-2315, 2322.(ZHANG Weiwei, LI Ruimin, XIE Zhongjiao. Travel time prediction of urban road based on deep learning[J]. Journal of System Simulation,2017,29(10): 2309-2315, 2322.(in Chinese))
    [11]
    RAN X, SHAN Z, FANG Y, et al. An LSTM-based method with attention mechanism for travel time prediction[J]. Sensors,2019,19(4): 861.
    [12]
    王志建, 李达标, 崔夏. 基于LSTM神经网络的降雨天旅行时间预测研究[J]. 交通运输系统工程与信息, 2020,20(1): 137-144.(WANG Zhijian, LI Dabiao, CUI Xia. Research on rainy day travel time forecast based on LSTM neural network[J]. Transportation System Engineering and Information,2020,20(1): 137-144.(in Chinese))
    [13]
    CHO K, VAN MERRIENBOER B, BAHDANAU D, et al. On the properties of neural machine translation: encoder-decoder approaches[Z/OL].(2014-10-07)[2021-03-08]. https://arxiv.org/abs/1409.1259.
    [14]
    刘松, 彭勇, 邵毅明, 等. 基于门控递归单元神经网络的高速公路行程时间预测[J]. 应用数学和力学, 2019,40(11): 1289-1298.(LIU Song, PENG Yong, SHAO Yiming, et al. Highway travel time prediction based on gated recursive unit neural network[J]. Applied Mathematics and Mechanics,2019,40(11): 1289-1298.(in Chinese))
    [15]
    汤霞, 匡海波, 孟斌, 等. 基于EMD的中国出口集装箱运价指数波动特性[J]. 科研管理, 2017,38(12): 144-154.(TANG Xia, KUANG Haibo, MENG Bin, et al. Fluctuation characteristics of China’s export container freight index based on EMD[J]. Research Management,2017,38(12): 144-154.(in Chinese))
    [16]
    李合龙, 杨能, 林楚汉, 等. 我国股票市场行业间波动溢出效应研究: 基于改进的EMD去噪方法[J]. 系统工程理论与实践, 2019,39(9): 2179-2188.(LI Helong, YANG Neng, LIN Chuhan, et al. Research on the volatility spillover effect in my country’s stock market: based on improved EMD denoising method[J]. Systems Engineering Theory and Practice,2019,39(9): 2179-2188.(in Chinese))
    [17]
    WU Z, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis,2009,1(1): 1-41.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1269) PDF downloads(514) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return