Citation: | LI Haitao, DING Hu, CHEN Liqun, QIN Weiyang. Homoclinic Bifurcations and Chaos Thresholds of Tristable Piezoelectric Vibration Energy Harvesting Systems[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1311-1322. doi: 10.21656/1000-0887.410164 |
[1] |
PRIYA S, INMAN D J. Energy Harvesting Technologies [M]. New York: Springer, 2009.
|
[2] |
董彦辰, 张业伟, 陈立群. 惯容器非线性减振与能量采集一体化模型动力学分析[J]. 应用数学和力学, 2019,40(9): 968-979.(DONG Yanchen, ZHANG Yewei, CHEN Liqun. Dynamic analysis of the nonlinear vibration absorber-energy harvester integration model with inerter[J]. Applied Mathematics and Mechanics, 2019,40(9): 968-979.(in Chinese))
|
[3] |
HARNE R L, WANG K W. A review of the recent research on vibration energy harvesting via bistable systems[J]. Smart Materials and Structures,2013,22(2): 023001.
|
[4] |
张小静, 刘丽兰, 任博林, 等. 势阱深度对双稳态电磁发电系统发电性能的影响研究[J]. 应用数学和力学, 2017,38(6): 622-632.(ZHANG Xiaojing, LIU Lilan, REN Bolin, et al. Influence of potential well depth on power generation performance of bistable electromagnetic energy harvesting systems[J]. Applied Mathematics and Mechanics,2017,38(6): 622-632.(in Chinese))
|
[5] |
吴子英, 牛峰琦, 刘蕊, 等. 有色噪声激励下双稳态电磁式振动能量捕获器动力学特性研究[J]. 应用数学和力学, 2017,38(5): 570-580.(WU Ziying, NIU Fengqi, LIU Rui, et al. Dynamic characteristics of bistable electromagnetic vibration energy harvesters under colored noise excitation[J]. Applied Mathematics and Mechanics, 2017,38(5): 570-580.(in Chinese))
|
[6] |
刘蕊, 吴子英, 叶文腾. 附加非线性振子的双稳态电磁式振动能量捕获器动力学特性研究[J]. 应用数学和力学, 2017,38(4): 432-446.(LIU Rui, WU Ziying, YE Wenteng. Dynamics research of bistable electromagnetic energy harvesters with auxiliary nonlinear oscillators[J]. Applied Mathematics and Mechanics, 2017,38(4): 432-446.(in Chinese))
|
[7] |
MASANA R, DAQAQ M F. Energy harvesting in the super-harmonic frequency region of a twin-well oscillator[J]. Journal of Applied Physics,2012,111(4): 044501.
|
[8] |
LI H T, QIN W Y, LAN C B, et al. Dynamics and coherence resonance of tri-stable energy harvesting system[J]. Smart Materials and Structures,2016,25(1): 015001.
|
[9] |
LI H T, QIN W Y, ZU J, et al. Modeling and experimental validation of a buckled compressive-mode piezoelectric energy harvester[J]. Nonlinear Dynamics,2018,92(4): 1761-1780.
|
[10] |
ZHOU S X, CAO J Y, ERTURK A, et al. Enhanced broadband piezoelectric energy harvesting using rotatable magnets[J]. Applied Physics Letters,2013,102(17): 173901.
|
[11] |
周生喜, 曹军义, ERTURK A, 等. 压电磁耦合振动能量俘获系统的非线性模型研究[J]. 西安交通大学学报, 2014,48(1): 106-111.(ZHOU Shengxi, CAO Junyi, ERTURK A, et al. Nonlinear model for piezoelectric energy harvester with magnetic coupling[J]. Journal of Xi’an Jiaotong University,2014,48(1): 106-111.(in Chinese)
|
[12] |
ZHOU S X, ZUO L. Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting[J]. Communications in Nonlinear Science and Numerical Simulation,2018,61: 271-284.
|
[13] |
CHEN L Q, LI K. Equilibriums and their stabilities of the snap-through mechanism[J]. Archive of Applied Mechanics,2016,86(3): 403-410.
|
[14] |
WANG G, ZHAO Z, LIAO W H, et al. Characteristics of a tri-stable piezoelectric vibration energy harvester by considering geometric nonlinearity and gravitation effects[J]. Mechanical Systems and Signal Processing,2020,138: 106571.
|
[15] |
李海涛, 秦卫阳. 双稳态压电能量获取系统的分岔混沌阈值[J]. 应用数学和力学, 2014,35(6): 652-662.(LI Haitao, QIN Weiyang. Bifurcation and chaos thresholds of bistable piezoelectric vibration energy harvesting systems[J]. Applied Mathematics and Mechanics,2014,35(6): 652-662.(in Chinese))
|
[16] |
SUN S, CAO S Q. Analysis of chaos behaviors of a bistable piezoelectric cantilever power generation system by the second-order Melnikov function[J]. Acta Mechanica Sinica,2017,33(1): 200-207.
|
[17] |
KITIO KWUIMY C A, NATARAJ C, LITAK G. Melnikov’s criteria, parametric control of chaos, and stationary chaos occurrence in systems with asymmetric potential subjected to multiscale type excitation[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science,2011,21(4): 043113.
|
[18] |
OUMB TKAM G T, KITIO KWUIMY C A, WOAFO P. Analysis of tristable energy harvesting system having fractional order viscoelastic material[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science,2015,25(1): 013112.
|
[19] |
TIAN R, ZHOU Y, ZHANG B, et al. Chaotic threshold for a class of impulsive differential system[J]. Nonlinear Dynamics, 2016,83(4): 2229-2240.
|
[20] |
LI H T, ZU J, YANG Y F, et al. Investigation of snap-through and homoclinic bifurcation of a magnet-induced buckled energy harvester by the Melnikov method[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science,2016,26(12): 123109.
|
[21] |
FENG J, ZHANG Q, WANG W. Chaos of several typical asymmetric systems[J]. Chaos, Solitons and Fractals,2012,45(7): 950-958.
|