WANG Jialin, WANG Chengyan, CAO Kerui. A Mixed Integer Optimization Model Based on Inelastic Contraction for Cable Adjustment of Cable-Stayed Bridges[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1336-1345. doi: 10.21656/1000-0887.410148
Citation: WANG Jialin, WANG Chengyan, CAO Kerui. A Mixed Integer Optimization Model Based on Inelastic Contraction for Cable Adjustment of Cable-Stayed Bridges[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1336-1345. doi: 10.21656/1000-0887.410148

A Mixed Integer Optimization Model Based on Inelastic Contraction for Cable Adjustment of Cable-Stayed Bridges

doi: 10.21656/1000-0887.410148
  • Received Date: 2020-05-24
  • Rev Recd Date: 2020-07-19
  • Publish Date: 2020-12-01
  • For the cable force adjustment of cable-stayed bridges, truss elements were used to simulate the cables, and the amount of inelastic contraction was introduced into the degree-of-freedom vector of the cables. Through matrix transformation of the overall structural balance equations, an influence matrix based on the amount of inelastic contraction was established. With the obtained influence matrix, in the case of the full-bridge cable adjustment, the target cable force can be accurately achieved in theory. In response to the needs of some cable adjustments in actual projects, variables 0 and 1 were introduced to indicate that no adjustment is needed, or some cable is to be adjusted. Based on the integer variables and the adjustment length of the cable, a mixed integer optimization model was established to conveniently realize partial cable adjustment and optimization analysis of the cable. The calculation example demonstrates the effectiveness and feasibility of the optimization model.
  • loading
  • [1]
    顾安邦, 向中富. 桥梁工程(下册)[M]. 北京: 人民交通出版社, 2011.(GU Anbang, XIANG Zhongfu. Bridge Engineering(Vol 2) [M]. Beijing: China Communications Press, 2011.(in Chinese))
    [2]
    GIMSING N J, GEORGAKIS C T. Cable Supported Bridges: Concept and Design [M]. 3rd ed. Hoboken, NJ: Wiley, 2012.
    [3]
    MARTINS A M B, SIMES L M C, NEGRO J H J O. Optimization of cable-stayed bridges: a literature survey[J]. Advances in Engineering Software,2020,149: 102829.
    [4]
    陈德伟, 范立础. 确定预应力混凝土斜拉桥恒载初始索力的方法[J]. 同济大学学报(自然科学版), 1998,26(2): 120-124.(CHEN Dewei, FAN Lichu. Method to determine the initial cable force of prestressed concrete cable-stayed bridge under dead load[J]. Journal of Tongji University (Natural Science Edition),1998,26(2): 120-124.(in Chinese))
    [5]
    戴杰, 秦凤江, 狄谨, 等. 斜拉桥成桥索力优化方法研究综述[J]. 中国公路学报, 2019,32(5): 17-37.(DAI Jie, QIN Fengjiang, DI Jin, et al. Review on cable force optimization method for cabled-stayed bride in completed bridge state[J]. China Journal of Highway and Transport,2019,32(5): 17-37.(in Chinese))
    [6]
    田源, 杨海霞. 斜拉桥成桥索力优化理论及方法的最新进展[J]. 三峡大学学报(自然科学版), 2013,35(2): 47-53.(TIAN Yuan, YANG Haixia. The latest development of the theory and method of cable force optimization of cable-stayed bridge[J]. Journal of Three Gorges University(Natural Science Edition),2013,35(2): 47-53.(in Chinese))
    [7]
    CHEN D W. Determination of initial cable forces in prestressed concrete cable-stayed bridges for given design deck profiles using the force equilibrium method[J]. Computers & Structures,1999,74(1): 1-9.
    [8]
    YANG Jun. Determining the rational completion cable forces based on influence matrix method united minimum bending energy method[C]// Seventh International Conference on Traffic and Transportation Studies (ICTTS).Kunming, China, 2010.
    [9]
    杨贤康. 钢桁梁斜拉桥索力调整实用算法与施工控制[D]. 硕士学位论文. 长沙: 中南大学, 2012.(YANG Xiankang. Practical algorithm and construction control for cable force adjustment of steel truss cable-stayed bridge[D]. Master Thesis. Changsha: Central South University, 2012.(in Chinese))
    [10]
    JANJIC D, PIRCHER M, PIRPHER H. Optimization of cable tensioning in cable-stayed bridges[J]. Journal of Bridge Engineering, 2003,8(3): 131-137.
    [11]
    周银, 张雪松. 基于最小弯曲能的结合梁斜拉桥恒载索力优化计算方法[J]. 中外公路, 2018,38(4): 177-180.(ZHOU Yin, ZHANG Xuesong. Optimal calculation method of dead load cable force of combined beam cable-stayed bridge based on minimum bending energy[J]. Journal of China & Foreign Highway,2018,38(4): 177-180.(in Chinese))
    [12]
    宁平华, 张靖, 陈加树. 广州鹤洞大桥斜拉桥合理索力设计[C]//第十二届中国土木工程学会桥梁及结构工程分会. 北京: 人民交通出版社, 1996.(NING Pinghua, ZHANG Jing, CHEN Jiashu. Reasonable cable force design of Guangzhou Hedong bridge[C]// Proceedings of the 12th Bridge and Structure Engineering Branch of China Civil Engineering Society.Beijing: China Communications Publishing, 1996.(in Chinese))
    [13]
    陶海, 沈祥福. 斜拉桥索力优化的强次可行序列二次规划法[J]. 力学学报, 2006,38(3): 381-384.(TAO Hai, SHEN Xiangfu. Strongly subfeasible sequential quadratic programming method of cable tension optimization for cable-stayed bridge[J]. Chinese Journal of Theoretical and Applied Mechanics,2006,38(3): 381-384.(in Chinese))
    [14]
    淡丹辉, 杨通. 基于影响矩阵及粒子群算法的斜拉桥自动调索[J]. 同济大学学报(自然科学版), 2013,41(3): 355-360.(DAN Danhui, YANG Tong. Automatic cable force adjustment for cable stayed bridge based on influence matrix and particle swarm optimization algorithm[J]. Journal of Tongji University(Natural Science),2013,41(3): 355-360.(in Chinese))
    [15]
    孙全胜, 孟安鑫. 基于影响矩阵法的非对称独塔斜拉桥索力优化[J]. 中外公路, 2016,41(3): 85-88.(SUN Quansheng, MENG Anxin. Cable force optimization of asymmetric single tower cable-stayed bridge based on influence matrix method[J]. Journal of China & Foreign Highway,2016,41(3): 85-88.(in Chinese))
    [16]
    苑仁安, 秦顺全, 肖海珠. 一种斜拉桥目标状态索力快速精准确定的方法[J]. 桥梁建设, 2020,50(2): 25-30.(YUAN Ren’an, QIN Shunquan, XIAO Haizhu. A method to rapidly and accurately determine target cable force for cable-stayed bridge[J]. Bridge Construction,2020,50(2): 25-30.(in Chinese))
    [17]
    MARTINS A M B, SIMES L M C, NEGRO J H J O. Optimization of cable forces for concrete cable-stayed bridges[C]// 14th International Conference on Civil, Structural and Environmental Engineering Computing.Stirling, UK, 2013.
    [18]
    MARTINS A M B, SIMES L M C, NEGRO J H J O. Cable stretching force optimization of concrete cable-stayed bridges including construction stages and time-dependent effects[J]. Structural and Multidisciplinary Optimization,2015,51(3): 757-772.
    [19]
    MARTINS A M B, SIMES L M C, NEGRO J H J O. Optimization of cable forces on concrete cable-stayed bridges including geometrical nonlinearities[J]. Computers & Structures,2015,155: 18-27.
    [20]
    GAO Q, YANG M G, QIAO J D. A multi-parameter optimization technique for prestressed concrete cable-stayed bridges considering prestress in girder[J]. Structural Engineering and Mechanics,2017,64(5): 567-577.
    [21]
    SONG C L, XIAO R C, SUN B. Optimization of cable pre-tension forces in long-span cable-stayed bridges considering the counterweight[J]. Engineering Structures,2018,172: 919-928.
    [22]
    GUO J, YUAN W, DANG X, et al. Cable force optimization of a curved cable-stayed bridge with combined simulated annealing method and cubic B-spline interpolation curves[J]. Engineering Structures,2019,201: 109813.
    [23]
    王福敏, 张锋, 杜逢彬. 基于倒拆法对重庆朝天门长江大桥进行力学分析[J]. 公路交通技术, 2007(6): 43-47.(WANG Fumin, ZHANG Feng, DU Fengbin. Reverse disassembly based dynamic analysis on Chaotianmen Yangtze river bridge in Chongqing city[J]. Technology of Highway and Transport,2007(6): 43-47.(in Chinese))
    [24]
    颜东煌, 刘光栋. 确定斜拉桥合理施工状态的正装迭代法[J]. 中国公路学报, 1999,12(2): 59-64.(YAN Donghuang, LIU Guangdong. Forward-iteration method for determining rational construction state of cable-stayed bridges[J]. China Journal of Highway and Transport,1999,12(2): 59-64.(in Chinese))
    [25]
    杨德灿, 张先蓉, 金清平. 计入几何非线性影响的斜拉桥施工索力的确定[J]. 武汉理工大学学报(交通科学与工程版), 2005,29(6): 833-836.(YANG Decan, ZHANG Xianrong, JIN Qingping. Calculation of cable forces under construction for cable stayed bridges considering structural geometric non-linearity[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering),2005,29(6): 833-836.(in Chinese))
    [26]
    秦顺全. 分阶段成形结构过程控制的无应力状态控制法[J]. 中国工程科学, 2009,11(10): 72-78.(QING Shunquan. Unstressed state control method for process control of structure formed by stages[J]. Engineering Sciences,2009,11(10): 72-78.(in Chinese))
    [27]
    康春霞, 杜仕朝, 邬晓光. 斜拉桥合理施工状态计算方法对比分析研究[J]. 铁道科学与工程学报, 2017,14(1): 87-93.(KANG Chunxia, DU Shizhao, WU Xiaoguang. Discussion and comparative analysis on calculation method of reasonable construction state of cable stayed bridge[J]. Journal of Railway Science and Engineering,2017,14(1): 87-93.(in Chinese))
    [28]
    杨兴, 张敏, 周水兴. 影响矩阵法在斜拉桥二次调索中的应用[J]. 重庆交通大学学报(自然科学版), 2009,28(3): 508-511.(YANG Xing, ZHANG Min, ZHOU Shuixing. Application of influence matrix method in secondary cable adjustment of cable-stayed bridge[J]. Journal of Chongqing Jiaotong University (Natural Science Edition),2009,28(3): 508-511.(in Chinese))
    [29]
    韩伟. 基于无应力状态法的铁路独塔混合梁斜拉桥索力调整研究[J]. 施工技术, 2019,48(23): 53-58.(HAN Wei. Study on determination of cable force based on unstressed state method for railway cable-stayed bridge with single tower and hybrid girder[J]. Construction Technology,2019,48(23): 53-58.(in Chinese))
    [30]
    刘雄, 钟新谷, 熊先兰, 等. 基于无应力状态控制法的斜拉桥运营期调索计算方法研究[J]. 公路交通科技, 2015,32(9): 80-86.(LIU Xiong, ZHONG Xingu, XIONG Xianlan, et al. Study of cable adjustment calculation method of cable-stayed bridge during operation period based on control method of unstressed state[J]. Journal of Highway and Transportation Research and Development,2015,〖STHZ〗 32(9): 80-86.(in Chinese))
    [31]
    王家林, 何琳. 一种含非弹性收缩量的预应力筋单元: CN201410116301.0.2014[P]. 2014-6-18.(WANG Jialin, HE Lin. A prestressing tendon element with inelastic shrinkage: CN201410116301.0.2014[P]. 2014-6-18.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1412) PDF downloads(442) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return