Volume 42 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
YIN Zihan, KANG Jing. Dispersive Quantization of 2D Linear Dispersive Equations[J]. Applied Mathematics and Mechanics, 2021, 42(7): 741-750. doi: 10.21656/1000-0887.410142
Citation: YIN Zihan, KANG Jing. Dispersive Quantization of 2D Linear Dispersive Equations[J]. Applied Mathematics and Mechanics, 2021, 42(7): 741-750. doi: 10.21656/1000-0887.410142

Dispersive Quantization of 2D Linear Dispersive Equations

doi: 10.21656/1000-0887.410142
Funds:

The National Natural Science Foundation of China(11631007;11871395)

  • Received Date: 2020-05-19
  • Rev Recd Date: 2020-05-23
  • The dispersive quantization of the 2D linear KdV equation and the 2D linear Schrödinger equation were studied over a bounded rectangle domain in the plane. The research shows that, for the KdV equation, if the period ratio is a rational number, at the rational moments, the solution to the periodic initial boundary value problem will be the linear combination of the initial value conditions; whereas, at the irrational moments, the solution will be continuous and nondifferentiable, and exhibit a fractallike profile. The same is true for the 2D linear Schrödinger equation.
  • loading
  • [2]TALBOT W H F. Facts related to optical science[J]. Philosophical Magazine,1836,9: 401-407.
    BERRY M V. Quantum fractals in boxes[J]. Journal of Physics A: General Physics,1996,29: 6617-6629.
    [3]BERRY M V, MARZOLI I. Quantum carpets, carpets of light[J]. Physics World,2001,14(6): 39-44.
    [4]BERRY M V, KLEIN S. Integer, fractional and fractal Talbot effects[J]. Journal of Modern Optics,1996, 43: 2139-2146.
    [5]KAPITANSKI L, RODNIANSKI I. Does a quantum particle know the time?[M]//HEJHALJOEL〖JP〗 D A, FRIEDMAN J, GUTZWILLER M C, et al. Emerging Applications of Number Theory.The IMA Volumes in Mathematics and Its Applications,Vol109. New York: Springer, 1999: 355-371.
    [6]RODNIANSKI I. Fractal solutions of the Schrödinger equation[J]. Communications in Contemporary Mathematics,2000,255: 181-187.
    [7] OSKOLKOV K I. Schrödinger equation and oscillatory Hilbert transforms of second degree[J]. Journal of Fourier Analysis and Applications,1998,4: 341-356.
    [8] OSKOLKOV K I. A class of I.M. Vinogradov’s series and its applications in harmonic analysis[C]//Progress in Approximation Theory,Vol19. New York: Springer, 1992: 353-402.
    [9] TAYLOR M. The Schrödinger equation on spheres[J]. Pacific Journal of Mathematics,2003,209(1): 145-155.
    [10]OLVER P J. Dispersive quantization[J]. The American Mathematical Monthly,2010,117: 599-610.
    [11]CHEN G, OLVER P J. Dispersion of discontinuous periodic waves[J]. Proceedings of the Royal Society A,2012,469: 201220407.
    [12]CHEN G, OLVER P J. Numerical simulation of nonlinear dispersive quantization[J]. Discrete and Continuous Dynamical Systems,2013,34: 991-1008.
    [13]HOLDEN H, KARLSEN K H, RISEBRO N H. Operator splitting methods for generalized Korteweg-de Vries equations[J]. Journal of Computational Physics,1999,153: 203-222.
    [14] HOLDEN H, KARLSEN K H, RISEBRO N H, et al. Operator splitting for the KdV equation[J]. Mathematics,2011,80: 821-846.
    [15]LUBICH C. On splitting methods for Schrödinger-poisson and cubic nonlinear Schrödinger equations[J]. Mathematics of Computation,2008, 77: 2141-2153.
    [16]ERDOGAN M B, TZIRAKIS N. Talbot effect for the cubic nonlinear Schrödinger equation on the torus[J]. Mathematical Research Letters,2013,20: 1081-1090.
    [17] CHOUSIONIS V, ERDOGAN M B, TZIRAKIS N. Fractal solutions of linear and nonlinear dispersive partial differential equations[J]. Proceedings of the London Mathematical Society,2015,110: 543-564.
    [18]ERDOGAN M B, SHAKAN G. Fractal solutions of dispersive partial differential equations on the torus[J]. Selecta Mathematica,2019,25: 11. DOI: 10.1007/s00029-019-0455-1.
    [19]OLVER P J, SHEILS N E, SMITH D A. Revivals and fractalisation in the linear free space Schrödinger equation[J]. Quarterly of Applied Mathematics,2020, 78: 161-192.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (838) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return