Citation: | BAO Xiaobing, LIU Libin, MAO Zhi. A Posteriori Error Estimation and Adaptive Algorithm for Singularly Perturbed Reaction-Diffusion Equations[J]. Applied Mathematics and Mechanics, 2021, 42(3): 323-330. doi: 10.21656/1000-0887.410103 |
[1] |
史娟荣, 莫嘉琪. 一类奇异摄动燃烧模型的渐近解[J]. 应用数学和力学, 2016,37(7): 691-698.(SHI Juanrong, MO Jiaqi. Asymptotic solutions to a class of singular perturbation burning models[J]. Applied Mathematics and Mechanics,2016,37(7): 691-698.(in Chinese))
|
[2] |
VULANOVIC R, TEOFANOV L. A uniform numerical method for semilinear reaction-diffusion problems with a boundary turning point[J]. Numerical Algorithms,2010,54: 431-444.
|
[3] |
GENG F, QIAN S, LI S. Numerical solutions of singularly perturbed convection-diffusion problems[J]. International Journal of Numerical Methods for Heat & Fluid Flow,2014,24(6): 1268-1274.
|
[4] |
RAMOS H, VIGO-AGUIAR J, NATESAN S, et al. Numerical solution of nonlinear singularly perturbed problems on nonuniform meshes by using a non-standard algorithm[J]. Journal of Mathematical Chemistry,2010,48(1): 38-54.
|
[5] |
ADLER J, MACLACHLAN S, MADDEN N. A first-order system Petrov-Galerkin discretization for a reaction-diffusion problem on a fitted mesh[J]. IMA Journal of Numerical Analysis,2015,36(3): 1-29.
|
[6] |
BRDAR M, ZARIN H. A singularly perturbed problem with two parameters on a Bakhvalov-type mesh[J]. Journal of Computational and Applied Mathematics,2016,292: 307-319.
|
[7] |
蔡新, 蔡丹琳, 吴瑞潜, 等. 奇异摄动反应扩散问题的高阶不等距计算方法[J]. 应用数学和力学, 2009,30(2): 171-178.(CAI Xin, CAI Danlin, WU Ruiqian, et al. High accurate non-equidistant method for singular perturbation reaction-diffusion problem[J]. Applied Mathematics and Mechanics,2009,30(2): 171-178.(in Chinese))
|
[8] |
邵文婷, 郑烁宇. 奇异摄动内层问题的宽度估计及其数值求解[J]. 计算机工程与应用, 2020,56(4): 44-49.(SHAO Wenting, ZHENG Shuoyu. Width estimation of singular perturbed interior layer problem and its numerical solution[J]. Computer Engineering and Applications,2020,56(4): 44-49.(in Chinese))
|
[9] |
Jiang W A, Luo S K. A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems[J]. Nonlinear Dynamics, 2012, 67(1): 475-482.
|
[10] |
LIU L B, CHEN Y P. A robust adaptive grid method for a system of two singularly perturbed convection-diffusion equations with weak coupling[J]. Journal of Scientific Computing,2014,61(1): 1-16.
|
[11] |
毛志, 刘利斌. 一类奇异摄动问题的自适应移动网格算法[J]. 湘潭大学学报(自然科学版), 2019,41(1): 64-71.(MAO Zhi, LIU Libin. An adaptive moving grid algorithm for a system of singularly perturbed problems[J]. Journal of Xiangtan University (Natural Science Edition),2019,41(1): 64-71.(in Chinese))
|
[12] |
CHADHA N M, KOPTEVA N. A robust grid equidistribution method for a one-dimensional singularly perturbed semilinear reaction-diffusion problem[J]. IMA Journal of Numerical Analysis,2011,31(1): 188-211.
|
[13] |
LINB T, RADOJEV G, ZARIN H. Approximation of singularly perturbed reaction-diffusion problems by quadratic C 1-splines[J]. Numerical Algorithms,2012,61: 35-55.
|
[14] |
LINB T, RADOJEV G. Robust a posteriori error bounds for spline collocation applied to singularly perturbed reaction-diffusion problems[J]. Electronic Transactions on Numerical Analysis,2016,45: 342-353.
|
[15] |
LINB T. A posteriori error estimation for arbitrary order fem applied to singularly perturbed one-dimensional reaction-diffusion problems[J]. Applications of Mathematics,2014,59(3): 241-256.
|
[16] |
KOPTEVA N. Maximum norm a posteriori error estimates for a 1D singularly perturbed semilinear reaction-diffusion problem[J]. IMA Journal of Numerical Analysis,2006,27(3): 1-14.
|
[17] |
KOPTEVA N, MADDENB N, STYNES M. Grid equidistribution for reaction-diffusion problems in one dimension[J]. Numerical Algorithms,2005,40(3): 305-322.
|
[18] |
RAO S C S, KUMAR S, KUMAR M. A parameter-uniform B-spline collocation method for singularly perturbed semilinear reaction-diffusion problems[J]. Journal of Optimization Theory and Applications,2010,146: 795-809.
|