ZHANG Chao, LIU Zhanfang. Inhibition of Low Pressure on Interfacial Damage in Polymer Bonded Explosive Under Temperature Fluctuation[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1057-1071. doi: 10.21656/1000-0887.410092
Citation: ZHANG Chao, LIU Zhanfang. Inhibition of Low Pressure on Interfacial Damage in Polymer Bonded Explosive Under Temperature Fluctuation[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1057-1071. doi: 10.21656/1000-0887.410092

Inhibition of Low Pressure on Interfacial Damage in Polymer Bonded Explosive Under Temperature Fluctuation

doi: 10.21656/1000-0887.410092
Funds:  The National Natural Science Foundation of China(51375416)
  • Received Date: 2020-04-02
  • Rev Recd Date: 2020-09-20
  • Publish Date: 2020-10-01
  • The influence of low pressure on polymer-bonded explosive (PBX) interfacial damage under temperature fluctuation was investigated. Firstly, a 2D geometric model was built with the Voronoi method. The change of interfacial bonding property was studied under temperature changes, with the particles considered as elasto-plastic, the binder as 2-layer viscoplastic and the zero-thickness cohesion model to reflect the interfacial bonding conditions. Then, the inhibition effect of low pressure on the interfacial damage of PBX under temperature fluctuation was studied based on the thermo-mechanical coupling method, and the curve of normal traction changing with low pressure was fitted. The results show that, the initial damage is mainly caused by the tangential traction of the interface in the heating stage, and the interfacial damage is mainly caused by the normal traction in the cooling stage. What’s more,the temperature drop is more likely to cause interfacial damage than the temperature rise. Regardless of temperature rise or fall, a certain low pressure can inhibit the interfacial damage, but a too high pressure may cause new damages; to inhibit the interfacial damage, the pressure required in the cooling process should be higher than that in the heating process, which is consistent with the larger interfacial damage in the cooling stage.
  • loading
  • [1]
    孙业斌, 惠君明, 曹欣茂. 军用混合炸药[M]. 北京: 兵器工业出版社, 1995.(SUN Yebin, HUI Junming, CAO Xinmao. Military Mixed Explosives [M]. Beijing: Weapons Industry Press, 1995.(in Chinese))
    [2]
    松全才, 杨崇惠, 金韶华. 炸药理论[M]. 北京: 国防工业出版社, 1997.(SONG Quancai, YANG Chonghui, JIN Shaohua. Theory of Explosives [M]. Beijing: National Defense Industry Press, 1997.(in Chinese))
    [3]
    罗景润. PBX的损伤、断裂及本构关系研究[D]. 博士学位论文. 绵阳: 中国工程物理研究院, 2001.(LUO Jingrun. Study on damage, fracture and constitutive relationship of PBX[D]. PHD Thesis. Mianyang: China Academy of Engineering Physics, 2001.(in Chinese))
    [4]
    TREVOR M W, TONY V B, JONATHAN L, et al. Changes in pore size distribution upon thermal cycling of TATB-based explosives measured by ultra-small angle X-Ray scattering[J]. Propellants, Explosives, Pyrotechnics,2006,31(6): 466-471.
    [5]
    DARLA G T, RICARDO B S, RACCI D L. Irreversible volume expansion of a TATB-based composite and compressive strength[C]//19th Biennial Conference on Shock Compression of Condensed Matter, American Physical Society . Tampa, Florida, United States, 2015.
    [6]
    JEAN B G, FRANCOIS W, HERVE T, et al. Thermoelastic properties of microcracked polycrystals, part Ⅱ: the case of jointed polycrystalline TATB [J]. International Journal of Solids and Structures,2018,155: 1-51.
    [7]
    HARRELL D. Bartherm processing of small LX-14 pressings[R]. MHSMP-75-20F, 1975, 1-3.
    [8]
    兰琼, 戴斌, 杨白凤, 等. 温压时效处理PBX内部裂纹愈合现象研究[J]. 含能材料, 2016,21(2): 205-208.(LAN Qiong, DAI Bin, YANG Baifeng, et al. Healing of cracks in PBX by thermal pressure aging treatment[J]. Chinese Journal of Energetic Materials,2016,21(2): 205-208.(in Chinese))
    [9]
    RAE P J, PALMER S J P, GOLDREIN H T, et al. Quasi-static studies of the deformation and failure of PBX 9501[J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences,2002,458(2025): 2227-2242.
    [10]
    DAI K D, LU B D, CHEN P W, et al. Modelling microstructural deformation and the failure process of plastic bonded explosives using the cohesive zone model[J]. Materials,2019,12(22): 3661. DOI: 10.3390/ma12223661.
    [11]
    陈青青, 张煜航, 张杰, 等. 含孔隙混凝土二维细观建模方法研究[J]. 应用数学和力学, 2020,41(2): 182-194.(CHEN Qingqing, ZHANG Yuhang, ZHANG Jie, et al. Study on a 2D microscopic modeling method of for concrete with voids[J]. Applied Mathematics and Mechanics,2020,41(2): 182-194.(in Chinese))
    [12]
    史君林, 赵建平. 含三晶交多晶体沿晶断裂数值建模方法研究[J]. 机械强度, 2018,40(4): 844-851.(SHI Junlin, ZHAO Jianping. Investigation on finite element modeling method of with triple junction polycrystalline intergranular fracture[J]. Journal of Mechanical Strength,2018,40(4): 844-851.(in Chinese))
    [13]
    张煜航, 陈青青, 张杰, 等. 混凝土三维细观模型的建模方法与力学特性分析[J]. 爆炸与冲击, 2019,39(5): 054205.(ZHANG Yuhang, CHEN Qingqing, ZHANG Jie, et al. 3D mesoscale modeling method and dynamic mechanical properties investigation of concrete[J]. Explosion and Shock Waves,2019,39(5): 054205.(in Chinese))
    [14]
    陈鹏万, 丁雁生. 高聚物粘结炸药的力学行为及变形破坏机理[J]. 含能材料, 2000,8(4): 161-164.(CHEN Pengwan, DING Yansheng. Mechanical behavior and deformation and failure mechanism of polymer bonded explosives[J]. Chinese Journal of Energetic Materials,2000,8(4): 161-164.(in Chinese))
    [15]
    ANDREY A, FRANOIS W, DOMINIQUE J. Numerical modeling of the thermal expansion of an energetic material[J]. International Journal of Solids and Structures,2015,60/61: 125-139.
    [16]
    温茂萍, 唐维, 董平, 等. 粘结剂含量对热压TATB基PBX残余应力的影响[J]. 含能材料, 2017,25(8): 661-666.(WEN Maoping, TANG Wei, DONG Ping, et al. Effect of binder content on residual stress of thermally compacted TATB based PBX[J]. Chinese Journal of Energetic Materials,2017,25(8): 661-666.(in Chinese))
    [17]
    SUN J, KANG B, ZHANG H, et al. Investigation on irreversible expansion of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene cylinder[J]. Central European Journal of Energetic Materials,2011,8(1): 69-79.
    [18]
    丁雁生, 潘颖, 蔡瑞娇, 等. PBX材料的蠕变损伤本构关系[J]. 含能材料, 2000,8(2): 86-90.(DING Yansheng, PAN Ying, CAI Ruijiao, et al. The creep-damage constitutive relation of PBX[J]. Chinese Journal of Energetic Materials,2000,8(2): 86-90.(in Chinese))
    [19]
    李明, 温茂萍, 何强, 等. TATB基高聚物粘结炸药的蠕变特性研究[J]. 含能材料, 2005,13(3): 150-154.(LI Ming, WEN Maoping, HE Qiang, et al. The compressive creep behavior of PBX based TATB[J]. Chinese Journal of Energetic Materials,2005,13(3): 150-154.(in Chinese))
    [20]
    KANG J J, BECKER A A, SUN W. Determination of elastic and viscoplastic material properties obtained from indentation tests using a combined finite element analysis and optimization approach[J]. Journal of Materials: Design and Applications,2015,229(3): 175-188.
    [21]
    ADEL A W, SABBAH A, VADIM V, et al. Temperature-dependent mechanical behaviour of PMMA: experimental analysis and modelling[J]. Polymer Testing,2017,58: 86-95.
    [22]
    唐维, 李明, 张丘, 等. PBX部件机械加工过程中的夹持变形预测[J]. 含能材料, 2008,16(6): 703-707.(TANG Wei, LI Ming, ZHANG Qiu, et al. Prediction for clamping deformation of PBX parts on mechanical process[J]. Chinese Journal of Energetic Materials,2008,16(6): 703-707.(in Chinese))
    [23]
    WIEGAND D A, PINTO J. The composition of polymer composite fracture surfaces by XPS[J]. Materials Research Society Symposium Proceedings,1996,409: 281-286.
    [24]
    WIEGAND D A, SCHMIDT S C, DANDEKAR D P, et al. Mechanical failure properties of composite plastic bonded explosives[J]. AIP Conference Proceedings,1998,429, 599-602.
    [25]
    RAE P J, GOLDREIN H T, PALMER S J P, et al. Quasi-static studies of the deformation and failure of β -HMX based polymer bonded explosives[J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences,2002,458: 743-762.
    [26]
    DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids,1960,8(2): 100-104.
    [27]
    TURON A, CAMANHO P P, COSTA J. A damage model for the simulation of delamination in advanced composites under variable mode loading[J]. Mechanics of Materials,2006,38(11): 1072-1089.
    [28]
    MANIVANNAN R, JONG S L, YANG S H, et al. Delamination characterization of bonded interface in polymer coated steel using surface based cohesive model[J]. International Journal of Precision Engineering and Manufacturing,2013,14(10): 1-11.
    [29]
    郭双喜, 李雪芹. 记及压应力的内聚力单元及其厚度对复合材料分层损伤预测的影响[J]. 玻璃钢/复合材料, 2019,2: 20-25.(GUO Shuangxi, LI Xueqin. The influences of cohesive element compressive stress and its thickness on delamination prediction of composite[J]. Fiber Reinforced Plastics/Composites,2019,2: 20-25.(in Chinese))
    [30]
    姚振华, 李亚智, 刘向东, 等. 复合材料层合板低速冲击后剩余压缩强度研究[J]. 西北工业大学学报, 2012,30(4): 518-523.(YAO Zhenhua, LI Yazhi, LIU Xiangdong, et al. Effectively calculating residual compressive strength of composite laminae after impact[J]. Journal of Northwestern Polytechnical University,2012,30(4): 518-523.(in Chinese))
    [31]
    颜熹琳, 唐明峰, 甘海啸, 等. 拉剪复合试验测试炸药晶体/粘结剂界面力学特性[J]. 含能材料, 2016,〖STHZ〗 24(6): 587-591.(YAN Xiling, TANG Mingfeng, GAN Haixiao, et al. Mechanical characteristics of explosive crystal/binder interface tested by tensile shear composite test[J].Chinese Journal of Energetic Materials,2016,24(6): 587-591.(in Chinese))
    [32]
    黄西成, 李尚昆, 魏强, 等. 基于XFEM与Cohesive模型分析PBX裂纹产生与扩展[J]. 含能材料, 2017,〖STHZ〗 25(8): 694-700.(HUANG Xicheng, LI Shangkun, WEI Qiang, et al. Analysis of crack initiation and growth in PBX energetic material using XFEM-based cohesive method[J]. Chinese Journal of Energetic Materials,2017,25(8): 694-700.(in Chinese))
    [33]
    郑保辉, 殷明, 耿呈祯, 等. 壳体约束下浇注PBX的温度适应性[J]. 含能材料, 2017,25(3): 232-239.(ZHENG Baohui, YIN Ming, GENG Chengzhen, et al. Temperature adaptability of cast PBX under restriction shell[J]. Chinese Journal of Energetic Materials,2017,25(3): 232-239.(in Chinese))
    [34]
    韦兴文, 吴束力, 唐兴. HMX基PBX热损伤的数值计算与实验研究[J]. 火炸药学报, 2014,37(4): 9-13.(WEI Xinwen, WU Shuli, TANG Xing. Numerical calculation and experimental study on thermal damage of HMX based poly bonded explosives[J]. Chinese Journal of Explosives & Propellants,2014,37(4): 9-13.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1024) PDF downloads(334) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return