Citation: | LI Yuanfei, XIAO Shengzhong, CHEN Xuejiao. Existence and Blow-Up Phenomena of Solutions to Heat Equations With Variable Coefficients Under Nonlinear Boundary Conditions[J]. Applied Mathematics and Mechanics, 2021, 42(1): 92-101. doi: 10.21656/1000-0887.410091 |
[1] |
GMEZ J L, MARQUEZ V, WOLANSKI N. Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition[J]. Journal of Differential Equations,1991,92(2): 384-401.
|
[2] |
KAWAKAMI T. Global existence of solutions for the heat equation with a nonlinear boundary condition[J]. Journal of Mathematical Analysis and Applications,2010,368: 320-329.
|
[3] |
PAYNE L E, SCHAEFER P W. Bounds for blow-up time for the heat equation under nonlinear boundary conditions[J]. Proceedings of the Royal Society of Edinburgh,2009,139(6): 1289-1296.
|
[4] |
LIU Y, LUO S G, YE Y H. Blow-up phenomena for a parabolic problem with a gradient nonlinearity under nonlinear boundary condition[J]. Computers & Mathematics With Applications,2013,65(8): 1194-1199.
|
[5] |
李远飞. 非线性边界条件下高维抛物方程解的全局存在性及爆破现象[J]. 应用数学学报, 2019,42(6): 721-735.(LI Yuanfei. Blow-up phenomena and global existences for higher-dimensional parabolic equations under nonlinear boundary conditions[J]. Acta Mathematicae Applicatae Sinica,2019,42(6): 721-735.(in Chinese))
|
[6] |
LIU Y. Lower bounds for the blow-up time in a nonlocal reaction diffusion problem under nonlinear boundary conditions[J]. Mathematical and Computer Modelling,2013,57: 926-931.
|
[7] |
LIU D M, MU C L, XIN Q. Lower bounds estimate for the blow-up time of a nonlinear nonlocal porous medium equation[J]. Acta Mathematica Scientia,2012,32(3): 1206-1212.
|
[8] |
李远飞. Robin边界条件下更一般化的非线性抛物问题全局解的存在性和爆破[J]. 应用数学学报, 2018,41(2): 257-267.(LI Yuanfei. Blow-up and global existence of the solution to some more general nonlinear parabolic problems with Robin boundary conditions[J]. Acta Mathematicae Applicatae Sinica,2018,41(2): 257-267.(in Chinese))
|
[9] |
YANG X, ZHOU Z F. Blow-up problems for the heat equation with a local nonlinear Neumann boundary condition[J]. Journal of Differential Equations,2016,261: 2738-2783.
|
[10] |
ISHIGE K. On the Fujita exponent for a semilinear heat equation with a potential term[J]. Journal of Mathematical Analysis and Applications,2008,344(1): 231-237.
|
[11] |
XIAO S P, FANG Z B. Nonexistence of solutions for the quasilinear parabolic differential inequalities with singular potential term and nonlocal source[J]. Journal of Inequalities and Applications,2020,2020: 64.
|
[12] |
CHUNG S Y, CHOI M J, PARK J H. On the critical set for Fujita type blow-up of solutions to the discrete Laplacian parabolic equations with nonlinear source on networks[J]. Computers and Mathematics With Applications,2019,78(6): 1838-1850.
|
[13] |
LIU Y, YU T, LI W K. Global well-posedness, asymptotic behavior and blow-up of solutions for a class of degenerate parabolic equations[J]. Nonlinear Analysis,2020,196: 111759.
|
[14] |
GRILLO G, MURATORI M, PUNZO F. Blow-up and global existence for the porous medium equation with reaction on a class of Cartan-Hadamard manifolds[J]. Journal of Differential Equations,2019,266(7): 4305-4336.
|
[15] |
HAN Y Z. Blow-up at infinity of solutions to a semilinear heat equation with logarithmic nonlinearity[J]. Journal of Mathematical Analysis and Applications,2019,474(1): 513-517.
|
[16] |
李远飞, 雷彩明. 具有非线性边界条件的趋化性模型解的爆破时间下界估计[J]. 应用数学学报, 2015,38(6): 1097-1102.(LI Yuanfei, LEI Caiming. Lower bound of the blow-up time for a model of chemotaxis with nonlinear boundary condition[J]. Acta Mathematicae Applicatae Sinica,2015,38(6): 1097-1102.(in Chinese))
|
[17] |
JIANG J, WU H, ZHENG S M. Blow-up for a three dimensional Keller-Segel model with consumption of chemoattractant[J]. Journal of Differential Equations,2018,264(8): 5432-5464.
|
[18] |
STRAUGHAN B.Explosive Instabilities in Mechanics [M]. Berlin: Springer, 1998.
|
[19] |
KAPLAN S. On the growth of solution of quasilinear parabolic equations[J]. Communications on Pure and Applied Mathematics,1963,16(3): 305-333.
|
[20] |
PAYNE L E, PHILIPPIN G A, VERNIER-PIRO S. Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, Ⅱ[J]. Nonlinear Analysis: Theory, Methods & Applications,2010,73(4): 971-978.
|
[21] |
BREZIS H. Analyse Fonctionnelle: Théorie et Applications [M]. London: Pitman Press, 1983.
|
[22] |
BREZIS H. Functional Analysis, Sobolev Spaces and Partial Differential Equations [M]. New York: Springer: 2011.
|
[23] |
李远飞. 海洋动力学中二维黏性原始方程组解对热源的收敛性[J]. 应用数学和力学, 2020,41(3): 339-352.(LI Yuanfei. Convergence results on heat source for 2D viscous primitive equations of ocean dynamics[J]. Applied Mathematics and Mechanics,2020,41(3): 339-352.(in Chinese))
|
[24] |
LIN C H, PAYNE L E. Continuous dependence on the Soret coefficient for double diffusive convection in Darcy flow[J]. Journal of Mathematical Analysis and Applications,2008,342(1): 311-325.
|
[25] |
LIU C C. The critical Fujita exponent for a diffusion equation with a potential term[J]. Lithuanian Mathematical Journal,2014,54(2): 182-191.
|