LIU Xu, YAO Linquan. Vibration Analysis of Rotating Functionally Gradient Nano Annular Plates in Thermal Environment[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1224-1236. doi: 10.21656/1000-0887.410090
Citation: LIU Xu, YAO Linquan. Vibration Analysis of Rotating Functionally Gradient Nano Annular Plates in Thermal Environment[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1224-1236. doi: 10.21656/1000-0887.410090

Vibration Analysis of Rotating Functionally Gradient Nano Annular Plates in Thermal Environment

doi: 10.21656/1000-0887.410090
Funds:  The National Natural Science Foundation of China(11572210)
  • Received Date: 2020-03-30
  • Rev Recd Date: 2020-10-20
  • Publish Date: 2020-11-01
  • Based on the nonlocal elasticity theory and the Kirchhoff thin plate theory, the vibration frequencies of rotating FGM nano annular plates in thermal environment were studied. Firstly, the differential equations for coupled radial and transverse motions of the rotating FGM nano annular plate under temperature changes and surface forces caused by rotating motions were obtained with the Hamiltonian principle, in turn, the transverse vibration of the plate was solved. Then, with the plane stress method, the axially symmetrical midplane internal forces of the annular plate under the action of centrifugal inertia force and the temperature stress distributed along the radial direction were obtained. After this, the differential equation with variable coefficients was solved with the differential quadrature method. Finally, through numerical simulations, the effects of the innerouter diameter ratio, the functionally gradient parameters, the rotation speed, the nonlocal parameters and the temperature on the dimensionless natural frequencies of the annular plate were analyzed.
  • loading
  • [1]
    周平, 沈纪苹, 姚林泉, 等. 基于Levinson三阶剪切理论的功能梯度轴对称圆板特征值问题求解[J]. 力学季刊, 2017,38(2): 215-230.(ZHOU Ping, SHEN Jiping, YAO Linquan, et al. On the eigenvalue problems of functionally graded axisymmetric circular plate based on Levinson plate theory[J]. Chinese Quarterly of Mechanics,2017,38(2): 215-230.(in Chinese))
    [2]
    李清禄, 王文涛, 杨静宁. 材料属性温度相关变厚度FGM圆板自由振动DQM求解[J]. 振动与冲击, 2018,37(10): 218-224.(LI Qinglu, WANG Wentao, YANG Jingning. Free vibration of FGM variable thickness circular plates with temperature-dependent material properties by the DQM method in thermal environment[J]. Journal of Vibration and Shock,2018,37(10): 218-224.(in Chinese))
    [3]
    MAHINZARE M, ALIPOUR M J, SAKKAK S A S, et al. A nonlocal strain gradient theory for dynamic modeling of a rotary thermo piezo electrically actuated nano FG circular plate[J]. Mechanical Systems and Signal Processing,2019,115: 323-337.
    [4]
    SHOJAEEFARD M H, GOOGARCHIN H S, GHADIRI M, et al. Micro temperature-dependent FG porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT[J]. Applied Mathematical Modelling,2017,50: 633-655.
    [5]
    唐光泽, 姚林泉, 李成, 等. 基于非局部理论的黏弹性纳米杆轴向振动与波传播研究[J]. 应用数学和力学, 2019,40(1): 36-46.(TANG Guangze, YAO Linquan, LI Cheng, et al. Longitudinal vibration and wave propagation of viscoelastic nanorods based on the nonlocal theory[J]. Applied Mathematics and Mechanics,2019,40(1): 36-46.(in Chinese))
    [6]
    徐晓建, 邓子辰. 非局部因子和表面效应对微纳米材料振动特性的影响[J]. 应用数学和力学, 2013,34(1): 14-21.(XU Xiaojian, DENG Zichen. Surface effects of adsorption-induced resonance analysis of micro/nanobeams via nonlocal elasticity[J]. Applied Mathematics and Mechanics,2013,34(1): 14-21.(in Chinese))
    [7]
    王铁军, 马连生, 石朝锋. 功能梯度中厚圆/环板轴对称弯曲问题的解析解[J]. 力学学报, 2004,36(3): 348-353.(WANG Tiejun, MA Liansheng, SHI Chaofeng. Analytical solutions for axisymmetric bending of functionally graded circular/annular plates[J]. Acta Mechanica Sinica,2004,36(3): 348-353.(in Chinese))
    [8]
    张莹, 梅靖, 陈鼎, 等. 功能梯度圆板和环板受周边力作用的弹性力学解[J]. 应用数学和力学, 2018,39(5): 538-547.(ZHANG Ying, MEI Jing, CHEN Ding, et al. Elasticity solutions for functionally graded circular and annular plates subjected to boundary forces and moments[J]. Applied Mathematics and Mechanics,2018,39(5): 538-547.(in Chinese))
    [9]
    彭旭龙, 李显方. 任意梯度分布功能梯度圆环的热弹性分析[J]. 应用数学和力学, 2009,30(10): 5-12.(PENG Xulong, LI Xianfang. Thermoelastic analysis of a functionally graded annulus with an arbitrary gradient[J]. Applied Mathematics and Mechanics,2009,30(10): 5-12.(in Chinese))
    [10]
    EFRAIM E, EISENBERGER M. Exact vibration analysis of variable thickness thick annular isotropic and FGM plates[J]. Journal of Sound and Vibration,2007,299(4/5): 720-738.
    [11]
    HOSSEINI-HASHEMI S, AKHAVAN H, TAHER H R D, et al. Differential quadrature analysis of functionally graded circular and annular sector plates on elastic foundation[J]. Materials & Design,2010,31(4): 1871-1880.
    [12]
    胡统号, 沈纪苹, 姚林泉. 弹性边界径向功能梯度压电环板面内振动[J]. 振动与冲击, 2018,37(8): 225-237.(HU Tonghao, SHEN Jiping, YAO Linquan. In-plane vibration of radial functional graded piezoelectric annular plates with elastic boundary[J]. Journal of Vibration and Shock,2018,37(8): 225-237.(in Chinese))
    [13]
    吕朋, 杜敬涛, 邢雪, 等. 热环境下弹性边界约束FGM圆环板面内振动特性分析[J]. 振动工程学报, 2017,30(5): 713-723.(L Peng, DU Jingtao, XING Xue, et al. Study on in-plane vibration characteristics of elastically restrained FGM annular panel in thermal environment[J]. Journal of Vibration Engineering,2017,30(5): 713-723.(in Chinese))
    [14]
    WANG Q, SHI D, LIANG Q, et al. A unified solution for free in-plane vibration of orthotropic circular, annular and sector plates with general boundary conditions[J]. Applied Mathematical Modelling,2016,40(21/22): 9228-9253.
    [15]
    LYU P, DU J, LIU Z, et al. Free in-plane vibration analysis of elastically restrained annular panels made of functionally graded material[J]. Composite Structures,2017,178: 246-259.
    [16]
    SHI X J, SHI D Y, QIN Z R, et al. In-plane vibration analysis of annular plates with arbitrary boundary conditions[J]. The Scientific World Journal,2014,2014: 1-10.
    [17]
    BASHMAL S, BHAT R, RAKHEJA S. In-plane free vibration of circular annular disks[J]. Journal of Sound and Vibration,2009,322(1/2): 216-226.
    [18]
    ERINGEN A C, EDELEN D G B. On nonlocal elasticity[J]. International Journal of Engineering Science,1972,10(3): 233-248.
    [19]
    ERINGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics,1983,54(9): 4703-4710.
    [20]
    马连生, 赵永刚. 功能梯度材料圆(环)板的屈曲分析[J]. 甘肃工业大学学报, 2003,29(4): 140-143.(MA Liansheng, ZHAO Yonggang. Bucking analysis of annular functionally-graded plates[J]. Journal of Gansu University of Technology,2003,29(4): 140-143.(in Chinese))
    [21]
    BAUER H F, EIDEL W. Transverse vibration and stability of spinning circular plates of constant thickness and different boundary conditions[J]. Journal of Sound and Vibration,2007,300(3/5): 877-895.
    [22]
    BERT C W, MALIK M. Differential quadrature method in computational mechanics:a review[J]. Applied Mechanics Reviews,1996,49(1): 1-28.
    [23]
    杨昌玉. 非局部理论下纳米结构动力行为的辛方法[D]. 博士学位论文. 大连: 大连理工大学, 2016.(YANG Changyu. The symplectic method on dynamic behaviors of nanostructures using the nonlocal theory[D]. PhD Thesis. Dalian: Dalian University of Technology, 2016.(in Chinese))
    [24]
    王忠民, 王昭, 张荣, 等. 基于微分求积法分析旋转圆板的横向振动[J]. 振动与冲击, 2014,33(1): 125-129.(WANG Zhongmin, WANG Zhao, ZHANG Rong, et al. Transverse vibration analysis of spinning circular plate based on differential quadrature method[J]. Journal of Vibration and Shock,2014,33(1): 125-129.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1298) PDF downloads(236) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return