Citation: | LIU Qian, CHEN Ruiqi. Global Solutions of the Asymptotically Periodic Curvature Flow Equations in Band Domains[J]. Applied Mathematics and Mechanics, 2021, 42(2): 180-187. doi: 10.21656/1000-0887.410087 |
[1] |
GAGE M, HAMILTON R S. The heat equation shrinking convex plane curves[J]. Journal of Differential Geometry,1986,23: 69-96.
|
[2] |
GRAYSON M. The heat equation shrinks embedded plane curves to round points[J]. Journal of Differential Geometry,1987,26: 285-314.
|
[3] |
CHOU K S, ZHU X P. The Curve Shortening Problem [M]. New York: Chapman & Hall, CRC, 2001.
|
[4] |
CHOU K S, ZHU X P. On the existence of two convex hypersurfaces with prescribed kth mean curvature[C]// Partial Differential Equations of Elliptic Type. Cortona, 1992.
|
[5] |
ALTSCHULER S J, WU L F. Convergence to translating solutions for a class of quasilinear parabolic boundary problems [J]. Mathematische Annalen,1993,295: 761-765.
|
[6] |
SMOLUCHOWSKI R. Theory of grain boundary motion[J]. Physical Review,1951,83(1): 69-70.
|
[7] |
TURNBULL D. Theory of grain boundary migration rates[J]. The Journal of the Minerals, Metals & Materials Society,1951,3(8): 661-665.
|
[8] |
MULLINS W W. Two-dimensional motion of idealized grain boundaries[J]. Journal of Applied Physics,1956,27(8): 900-904.
|
[9] |
NAKAMURA K I, MATANO H, HILHORST D, et al. Singular limit of a reaction-diffusion equation with a spatially inhomogeneous reaction term[J]. Journal of Statistical Physics,1999,95(5/6): 1165-1185.
|
[10] |
CAI J J, LOU B D. Convergence in a quasilinear parabolic equation with Neumann boundary conditions[J]. Nonlinear Analysis: Theory, Methods & Applications,2011,74(4): 1426-1435.
|
[11] |
YUAN L X, LOU B D. Entire solutions of a curvature flow in an undulating cylinder[J]. Bulletin of the Australian Mathematical Society,2019,99: 1-11.
|
[12] |
薛雪. 具有全局交互作用的时滞周期格微分系统的 front-like 整体解[J]. 应用数学和力学, 2020,41(2): 223-234.(XUE Xue. Front-like entire solutions to lattice periodic dynamic systems with delays and global interaction[J]. Applied Mathematics and Mechanics,2020,41(2): 223-234.(in Chinese))
|
[13] |
叶其孝, 李正元, 王明新, 等. 反应扩散方程引论[M]. 北京: 科学出版社, 2011.(YE Qixiao, LI Zhengyuan, WANG Mingxin, et al. Introduction to Reaction-Diffusion Equation [M]. Beijing: Science Press, 2011.(in Chinese))
|
[14] |
曹华荣, 吴事良. 一维格上时滞微分系统的行波解[J]. 应用数学和力学, 2018,39(5): 592-610.(CAO Huarong, WU Shiliang. Traveling waves of a delayed differential system in a lattice[J]. Applied Mathematics and Mechanics,2018,39(5): 592-610.(in Chinese))
|
[15] |
张秋, 陈广生. 一类具有非线性发生率与时滞的非局部扩散 SIR 模型的临界波的存在性[J]. 应用数学和力学, 2019,40(7): 713-727.(ZHANG Qiu, CHEN Guangsheng. Existence of critical traveling waves for nonlocal dispersal SIR models with delay and nonlinear incidence[J]. Applied Mathematics and Mechanics,2019,40(7): 713-727.(in Chinese))
|
[16] |
LOU Bendong. Periodic traveling waves of a mean curvature flow in heterogeneous media[J]. Discrete and Continuous Dynamical Systems: A,2009,25(1): 231-249.
|
[17] |
FRIEDMAN A. Parabolic Differential Equations of Parabolic Type [M]. Englewood Cliffs, NJ: Prentice-Hall, Inc, 1964.
|