Volume 42 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
ZHANG Lei, TANG Conggang, WANG Dequan, LIU Bing. Application of the Wavelet Galerkin Method to Solution of Nonlinear Bifurcation Problems[J]. Applied Mathematics and Mechanics, 2021, 42(1): 27-35. doi: 10.21656/1000-0887.410085
Citation: ZHANG Lei, TANG Conggang, WANG Dequan, LIU Bing. Application of the Wavelet Galerkin Method to Solution of Nonlinear Bifurcation Problems[J]. Applied Mathematics and Mechanics, 2021, 42(1): 27-35. doi: 10.21656/1000-0887.410085

Application of the Wavelet Galerkin Method to Solution of Nonlinear Bifurcation Problems

doi: 10.21656/1000-0887.410085
  • Received Date: 2020-03-25
  • Rev Recd Date: 2020-05-06
  • Publish Date: 2021-01-01
  • Application of the wavelet Galerkin method to solution of nonlinear bifurcation problems was studied through a typical Bratu problem. Firstly, 1D and 2D Bratu equations were discretized with the Coiflet based wavelet Galerkin method, then both the pseudo arclength scheme for tracing solution curves and the extended equations for calculating limit bifurcation points were derived in the case of 1parameter Bratu problems, similarly both the pseudo arclength scheme for tracing solution surfaces and the extended equations for solving cusp bifurcation points were also derived in the case of 2parameter Bratu problems. Numerical results show that, the wavelet Galerkin method not only has higher accuracy during bifurcation point calculation, but also is capable of capturing fold lines and cusp catastrophe quantitatively in the case of 2parameter bifurcation problems. This example exhibits the specific procedure of numerical bifurcation analysis based on the wavelet Galerkin method and demonstrates its potential for capturing complex bifurcation behaviors of multiparameter problems.
  • loading
  • [1]
    陈予恕, 唐云. 非线性动力学中的现代分析方法[M]. 北京: 科学出版社, 1992.(CHEN Yushu, TANG Yun. Modern Analytical Methods in Nonlinear Dynamics [M]. Beijing: Science Press, 1992.(in Chinese))
    [2]
    SEYDEL R. Practical Bifurcation and Stability Analysis [M]. New York: Springer, 2009.
    [3]
    季海波, 武际可. 分叉问题及其数值方法[J]. 力学进展, 1993,23(4): 493-502.(JI Haibo, WU Jike. Bifurcation and its numerical methods[J]. Advances in Mechancis,1993,23(4): 493-502.(in Chinese))
    [4]
    ROOSE D, PIESSENS R. Numerical computation of non-simple turning points and cusps[J]. Numerische Mathematik,1985,46(2): 189-211.
    [5]
    陈仲英, 巫斌. 小波分析[M]. 北京: 科学出版社, 2007.(CHEN Zhongying, WU Bin. Wavelet Analysis [M]. Beijing: Science Press, 2007.(in Chinese))
    [6]
    KRISHNAN J, RUNBORG O, KEVREKIDIS I G. Bifurcation analysis of nonlinear reaction-diffusion problems using wavelet: based reduction techniques[J]. Computers & Chemical Engineering,2004,28(4): 557-574.
    [7]
    张磊. 高精度小波数值方法及其在结构非线性分析中的应用[D]. 博士学位论文. 兰州: 兰州大学, 2016.(ZHANG Lei. High-precision wavelet numerical methods and applications to nonlinear structural analysis[D]. PhD Thesis. Lanzhou: Lanzhou University, 2016.(in Chinese))
    [8]
    刘小靖, 王记增, 周又和. 一种适用于强非线性结构力学问题数值求解的修正小波伽辽金方法[J]. 固体力学学报, 2011,32(3): 249-257.(LIU Xiaojing, WANG Jizeng, ZHOU Youhe. A modified wavelet Galerkin method for computations in structural mechancis with strong nonlinearity[J]. Chinese Journal of Solid Mechanics,2011,32(3): 249-257.(in Chinese))
    [9]
    LIU X J, ZHOU Y H, WANG X M, et al. A wavelet method for solving a class of nonlinear boundary value problems[J]. Communications in Nonlinear Science and Numerical Simulation,2013,18(8): 1939-1948.
    [10]
    WANG X M, LIU X J, WANG J Z, et al. A wavelet method for bending of circular plate with large defelction[J]. Acta Mech Solida Sinica,2015,28(1): 83-90.
    [11]
    ZHANG L, WANG J Z, ZHOU Y H. Wavelet solution for large deflection bending problems of thin rectangular plates[J]. Archive of Applied Mechanics,2015,85(3): 355-365.
    [12]
    MA X L, WU B, ZHANG J H, et al. A new numerical scheme with wavelet-Galerkin followed by spectral deferred correction for solving string vibration problems[J]. Mechanism and Machine Theory,2019,142(12): 103623.
    [13]
    ANDERSON C A, ZIENKIEWICZ O C. Spontanenous ignition: finite element solutions for steady state and transient conditions[J]. Journal of Heat Transfer,1974,96(3): 398-404.
    [14]
    KAPANIA R K. A pseudo-spectral solution of 2-parameter Bratu’s equation[J]. Computational Mechanics,1990,6(1): 55-63.
    [15]
    KARKOWSKI J. Numerical experiments with the Bratu equation in one, two and three dimensions[J]. Computational and Applied Mathematics,2013,32(1): 231-244.
    [16]
    洪文强, 徐绩青, 许锡宾, 等. 求解Bratu型方程的径向基函数逼近法[J]. 应用数学和力学, 2016,37(6): 617-625.(HONG Wenqiang, XU Jiqing, XU Xibin, et al. The radial basis function approximation method for solving Bratu-type equations[J]. Applied Mathematics and Mechanics,2016,37(6): 617-625.(in Chinese))
    [17]
    BODDINGTON T, FENG C G, GRAY P. Thermal explosion and the theory of its initiation by steady intense light[J]. Proceedings of the Royal Society A: Mathematical,1983,390(1799): 265-281.
    [18]
    GREENWAY P, SPENCE A. Numerical calculation of critical points for a slab with partial insulation[J]. Combust Flame,1985,62(2): 141-156.
    [19]
    CLIFFE K A, HALL E, HOUSTON P, et al. Adaptivity and a posteriori error control for bifurcation problems Ⅰ: the Bratu problem[J]. Communications in Computational Physics,2010,8(4): 845-865.
    [20]
    王记增. 正交小波统一理论与方法及其在压电智能结构等力学研究中的应用[D]. 博士学位论文. 兰州: 兰州大学, 2001.(WANG Jizeng. Generalized theory and arithmetic of orthogonal wavelets and applications to researches of mechanics including piezoeiectric smart structures[D]. PhD Thesis. Lanzhou: Lanzhou University, 2001.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (904) PDF downloads(230) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return