Citation: | ZHANG Lei, TANG Conggang, WANG Dequan, LIU Bing. Application of the Wavelet Galerkin Method to Solution of Nonlinear Bifurcation Problems[J]. Applied Mathematics and Mechanics, 2021, 42(1): 27-35. doi: 10.21656/1000-0887.410085 |
[1] |
陈予恕, 唐云. 非线性动力学中的现代分析方法[M]. 北京: 科学出版社, 1992.(CHEN Yushu, TANG Yun. Modern Analytical Methods in Nonlinear Dynamics [M]. Beijing: Science Press, 1992.(in Chinese))
|
[2] |
SEYDEL R. Practical Bifurcation and Stability Analysis [M]. New York: Springer, 2009.
|
[3] |
季海波, 武际可. 分叉问题及其数值方法[J]. 力学进展, 1993,23(4): 493-502.(JI Haibo, WU Jike. Bifurcation and its numerical methods[J]. Advances in Mechancis,1993,23(4): 493-502.(in Chinese))
|
[4] |
ROOSE D, PIESSENS R. Numerical computation of non-simple turning points and cusps[J]. Numerische Mathematik,1985,46(2): 189-211.
|
[5] |
陈仲英, 巫斌. 小波分析[M]. 北京: 科学出版社, 2007.(CHEN Zhongying, WU Bin. Wavelet Analysis [M]. Beijing: Science Press, 2007.(in Chinese))
|
[6] |
KRISHNAN J, RUNBORG O, KEVREKIDIS I G. Bifurcation analysis of nonlinear reaction-diffusion problems using wavelet: based reduction techniques[J]. Computers & Chemical Engineering,2004,28(4): 557-574.
|
[7] |
张磊. 高精度小波数值方法及其在结构非线性分析中的应用[D]. 博士学位论文. 兰州: 兰州大学, 2016.(ZHANG Lei. High-precision wavelet numerical methods and applications to nonlinear structural analysis[D]. PhD Thesis. Lanzhou: Lanzhou University, 2016.(in Chinese))
|
[8] |
刘小靖, 王记增, 周又和. 一种适用于强非线性结构力学问题数值求解的修正小波伽辽金方法[J]. 固体力学学报, 2011,32(3): 249-257.(LIU Xiaojing, WANG Jizeng, ZHOU Youhe. A modified wavelet Galerkin method for computations in structural mechancis with strong nonlinearity[J]. Chinese Journal of Solid Mechanics,2011,32(3): 249-257.(in Chinese))
|
[9] |
LIU X J, ZHOU Y H, WANG X M, et al. A wavelet method for solving a class of nonlinear boundary value problems[J]. Communications in Nonlinear Science and Numerical Simulation,2013,18(8): 1939-1948.
|
[10] |
WANG X M, LIU X J, WANG J Z, et al. A wavelet method for bending of circular plate with large defelction[J]. Acta Mech Solida Sinica,2015,28(1): 83-90.
|
[11] |
ZHANG L, WANG J Z, ZHOU Y H. Wavelet solution for large deflection bending problems of thin rectangular plates[J]. Archive of Applied Mechanics,2015,85(3): 355-365.
|
[12] |
MA X L, WU B, ZHANG J H, et al. A new numerical scheme with wavelet-Galerkin followed by spectral deferred correction for solving string vibration problems[J]. Mechanism and Machine Theory,2019,142(12): 103623.
|
[13] |
ANDERSON C A, ZIENKIEWICZ O C. Spontanenous ignition: finite element solutions for steady state and transient conditions[J]. Journal of Heat Transfer,1974,96(3): 398-404.
|
[14] |
KAPANIA R K. A pseudo-spectral solution of 2-parameter Bratu’s equation[J]. Computational Mechanics,1990,6(1): 55-63.
|
[15] |
KARKOWSKI J. Numerical experiments with the Bratu equation in one, two and three dimensions[J]. Computational and Applied Mathematics,2013,32(1): 231-244.
|
[16] |
洪文强, 徐绩青, 许锡宾, 等. 求解Bratu型方程的径向基函数逼近法[J]. 应用数学和力学, 2016,37(6): 617-625.(HONG Wenqiang, XU Jiqing, XU Xibin, et al. The radial basis function approximation method for solving Bratu-type equations[J]. Applied Mathematics and Mechanics,2016,37(6): 617-625.(in Chinese))
|
[17] |
BODDINGTON T, FENG C G, GRAY P. Thermal explosion and the theory of its initiation by steady intense light[J]. Proceedings of the Royal Society A: Mathematical,1983,390(1799): 265-281.
|
[18] |
GREENWAY P, SPENCE A. Numerical calculation of critical points for a slab with partial insulation[J]. Combust Flame,1985,62(2): 141-156.
|
[19] |
CLIFFE K A, HALL E, HOUSTON P, et al. Adaptivity and a posteriori error control for bifurcation problems Ⅰ: the Bratu problem[J]. Communications in Computational Physics,2010,8(4): 845-865.
|
[20] |
王记增. 正交小波统一理论与方法及其在压电智能结构等力学研究中的应用[D]. 博士学位论文. 兰州: 兰州大学, 2001.(WANG Jizeng. Generalized theory and arithmetic of orthogonal wavelets and applications to researches of mechanics including piezoeiectric smart structures[D]. PhD Thesis. Lanzhou: Lanzhou University, 2001.(in Chinese))
|