Citation: | ZHU Hongbao, CHEN Songlin. A Class of 2nd-Order Singularly Perturbed Time Delay Nonlinear Problems With 2 Parameters[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1292-1296. doi: 10.21656/1000-0887.410082 |
[1] |
JR O’MALLEY R E. Introduction to Singular Perturbation [M]. New York: Academic Press, 1974.
|
[2] |
CHANG K W, HOWES F A. Nonlinear Singular Perturbation Phenomena: Theory and Application [M]. New York: Springer Verlag, 1984.
|
[3] |
NAYFEH A H. Introduction for Perturbation Techniques [M]. New York: John Wiley & Sons, 1981.
|
[4] |
DE JAGER E M, JIANG Furu. The Theory of Singular Perturbation [M]. Amsterdam: North-Holland Publishing Co, 1996.
|
[5] |
BOH A. The shock location for a class of sensitive boundary value problems[J]. Journal of Mathematical Analysis and Applications,1999,235(1): 295-314.
|
[6] |
冯依虎, 陈怀军, 莫嘉琪. 一类非线性奇异摄动自治微分系统的渐近解[J]. 应用数学和力学, 2018,39(3): 355-363.(FENG Yihu, CHEN Huaijun, MO Jiaqi. Asymptotic solution to a class of nonlinear singular perturbation autonomous differential systems[J]. Applied Mathematics and Mechanics,2018,39(3): 355-363.(in Chinese))
|
[7] |
韩祥临, 石兰芳, 莫嘉琪. 双参数非线性非局部奇摄动问题的广义解[J]. 数学进展, 2016,45(1): 95-101.(HAN Xianglin, SHI Lanfang, MO Jiaqi. Generalized solution of nonlinear nonlocal singularly perturbed problems with two parameters[J]. Advances in Mathematics,2016,45(1): 95-101.(in Chinese))
|
[8] |
MO J Q, WANG W G, CHEN X F, et al. The shock wave solutions for singularly perturbed time delay nonlinear boundary value problems with two parameters[J]. Mathematica Applicata,2014,27(3): 470-475.
|
[9] |
WANG W G, SHI L F, HAN X L, et al. Singular perturbation problem for reaction diffusion time delay equation with boundary perturbation[J]. Chinese Journal of Engineering Mathematics,2015,32(2): 291-297.
|
[10] |
韩祥临, 汪维刚, 莫嘉琪. 一类非线性微分-积分时滞反应扩散系统奇摄动问题的广义解[J]. 数学物理学报, 2019,39A(2): 297-306.(HAN Xianglin, WANG Weigang, MO Jiaqi. Generalized solution to the singular perturbation problem for a class of nonlinear differential-integral time delay reaction diffusion system[J]. Acta Mathematica Scientia,2019,39A(2): 297-306.(in Chinese))
|
[11] |
朱红宝. 一类非线性奇摄动时滞边值问题的激波解[J]. 中国科学技术大学学报, 2018,48(5): 357-360.(ZHU Hongbao. The shock solutions for a class of singularly perturbed time delay nonlinear boundary value problems[J]. Journal of University of Science and Technology of China,2018,48(5): 357-360.(in Chinese))
|
[12] |
朱红宝. 一类分数阶非线性时滞问题的奇摄动[J]. 应用数学和力学, 2019,40(12): 1356-1363.(ZHU Hongbao. The shock solution to a class of singularly perturbed time delay nonlinear boundary value problem[J]. Applied Mathematics and Mechanics,2019,40(12): 1356-1363.(in Chinese))
|