Citation: | FAN Zhengjie, LIU Zhanfang. Numerical Analysis on Debonding of Crystal-Binder Interface in TATB-Based Polymer-Bonded Explosive Caused by Heating and Cooling Processes[J]. Applied Mathematics and Mechanics, 2020, 41(9): 956-973. doi: 10.21656/1000-0887.410062 |
[1] |
WU Y, HUANG F. A micromechanical model for predicting combined damage of particles and interface debonding in PBX explosives[J]. Mechanics of Materials,2009,41(1): 27-47.
|
[2] |
WANG G, WANG Y, WEN Q. Thermal-mechanical analysis for confined HMX-based polymer-bonded explosives[J]. Journal of Thermal Stresses,2019,42(8): 1011-1034.
|
[3] |
HU W, WU Y, HUANG F, et al. Numerical simulation analyses of β←→δ phase transition for a finite-sized HMX single crystal subjected to thermal loading[J]. RSC Advances,2018,8(44): 24873-24882.
|
[4] |
KLEIN R. Voronoi Diagrams and Delaunay Triangulations [M]. New York: Springer, 1975.
|
[5] |
VORONOI G. Nouvelles applications des paramètres continus à la théorie des formes quadratiques, deuxième mémoire: recherches sur les parallélloèdres primitifs[J]. Journal für die Reine und Angewandte Mathematik (Crelles Journal),1907,134: 97-178.
|
[6] |
BARUA A, KIM S, HORIE Y, et al. Ignition criterion for heterogeneous energetic materials based on hotspot size-temperature threshold[J]. Journal of Applied Physics,2013,113(6): 64906.
|
[7] |
AMBOS A, WILLOT F, JEULIN D, et al. Numerical modeling of the thermal expansion of an energetic material[J]. International Journal of Solids and Structures,2015,60/61(4): 125-139.
|
[8] |
AMBOS A, TRUMEL H, WILLOT F, et al. A fast Fourier transform micromechanical upscaling method for the study of the thermal expansion of a TATB-based pressed explosive[C]//The 15th International Detonation Symposium . San Francisco, USA, 2014.
|
[9] |
MCGRANE S D, ASLAM T D, PIERCE T H, et al. Temperature of shocked plastic bonded explosive PBX 9502 measured with spontaneous Stokes/anti-Stokes Raman[J]. Journal of Applied Physics,2018,123(4): 045902.
|
[10] |
PI Z, LANG C, WU J. Temperature-dependent shock initiation of CL-20 based high explosives[J]. Central European Journal of Energetic Materials,2017,14(2): 361-374.
|
[11] |
林聪妹, 刘佳辉, 曾贵玉, 等. 苯乙烯共聚物改性TATB基PBX的抗热冲击性能[J]. 含能材料, 2016,24(2): 149-154.(LIN Congmei, LIU Jiahui, ZENG Guiyu, et al. Thermal shock resistance of styrene copolymer modified TATB-based polymer bonded explosive[J]. Chinese Journal of Energetic Materials,2016,24(2): 149-154.(in Chinese))
|
[12] |
韦兴文, 吴束力, 唐兴. HMX基PBX炸药热损伤的数值计算与实验研究[J]. 火炸药学报, 2014,37(4): 9-13.(WEI Xingwen, WU Shuli, TANG Xing. Numerical calculation and experimental study on thermal damage of HMX based polymer bonded explosive[J]. Chinese Journal of Explosives & Propellants,2014,37(4): 9-13.(in Chinese))
|
[13] |
WILLEY T M, LAUDERBACH L, GAGLIARDI F, et al. Comprehensive characterization of voids and microstructure in TATB-based explosives from 10 nm to 1 cm: 〖JP2〗effects of temperature cycling and compressive creep[C]// The 14th International Detonation Symposium . Coeur d’Alene, USA, 2010.
|
[14] |
张伟斌, 田勇, 温茂萍, 等. JOB-9003炸药热冲击损伤的超声波检测[J]. 含能材料, 2004,12(2): 85-88.(ZHANG Weibin, TIAN Yong, WEN Maoping, et al. Experimental study on the thermal shock damage of explosive by ultrasonic testing[J]. Chinese Journal of Energetic Materials,2004,12(2): 85-88.(in Chinese))
|
[15] |
柏巍, 彭刚. 蒙特卡洛法生成混凝土随机骨料模型的ANSYS实现[J]. 石河子大学学报(自然科学版), 2007,25(4): 504-507.(BAI Wei, PENG Gang. ANSYS implementation of Monte Carlo method for generating random concrete aggregate model[J]. Journal of Shihezi University (Natural Science),2007,25(4): 504-507.(in Chinese))
|
[16] |
BUECHLER M A, MILLER N A, LUSCHER D J, et al. Modeling the effects of texture on thermal expansion in pressed PBX 9502 components[C]//ASME 2016 International Mechanical Engineering Congress and Exposition . Phoenix, USA, 2016.
|
[17] |
THOMPSON D G, BROWN G W, OLINGER B, et al. The effects of TATB ratchet growth on PBX 9502[J]. Propellants Explosives Pyrotechnics,2010,35(6): 507-513.
|
[18] |
XU X, XIAO J, HUI H, et al. Molecular dynamic simulations on the structures and properties of ε-CL-20(0 0 1)/F2314PBX[J]. Journal of Hazardous Materials,2010,175(1): 423-428.
|
[19] |
温茂萍, 唐维, 董平, 等. 粘结剂含量对热压TATB基PBX残余应力的影响[J]. 含能材料, 2017,25(8): 661-666.(WEN Maoping, TANG Wei, DONG Ping, et al. Effect of binder content on residual stress of thermally compacted TATB based PBX[J]. Chinese Journal of Energetic Materials,2017,25(8): 661-666.(in Chinese))
|
[20] |
SUN J, KANG B, ZHANG H, et al. Investigation on irreversible expansion of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene cylinder[J]. Central European Journal of Energetic Materials,2011,8(1): 69-79.
|
[21] |
唐维, 李明, 张丘, 等. PBX部件机械加工过程中的夹持变形预测[J]. 含能材料, 2008,16(6): 703-707.(TANG Wei, LI Ming, ZHANG Qiu, et al. Prediction for clamping deformation of PBX parts on machining process[J]. Chinese Journal of Energetic Materials,2008,〖STHZ〗 16(6): 703-707.(in Chinese))
|
[22] |
Dassault Systems. ABAQUS 6.14 documentation[DB/CD]. Providence, Rhode Island, USA, 2014.
|
[23] |
颜熹琳, 唐明峰, 甘海啸, 等. 拉剪复合试验测试炸药晶体/粘结剂界面力学特性[J]. 含能材料, 2016,24(6): 587-591.(YAN Xilin, TANG Mingfeng, GAN Haixiao, et al. Mechanical properties of explosive crystal/binder interface based on tension-shear test[J]. Chinese Journal of Energetic Materials,2016,24(6): 587-591.(in Chinese))
|
[24] |
黄西成, 李尚昆, 魏强, 等. 基于XFEM与Cohesive模型分析PBX裂纹产生与扩展[J]. 含能材料, 2017,25(8): 694-700.(HUANG Xicheng, LI Shangkun, WEI Qiang, et al. Analysis of crack initiation and growth in PBX energetic material using XFEM-based Cohesive method[J]. Chinese Journal of Energetic Materials,2017,25(8): 694-700.(in Chinese))
|