Citation: | ZHANG Qiaoling, GAO Shuping, HE Di, CHENG Mengfei. A Hybrid Neural Network Data Fusion Algorithm Based on Time Series[J]. Applied Mathematics and Mechanics, 2021, 42(1): 82-91. doi: 10.21656/1000-0887.410056 |
[1] |
孙友强. 时间序列数据挖掘中的维数约简与预测方法研究[D]. 博士学位论文. 合肥: 中国科学技术大学, 2014.(SUN Youqiang. Research on dimensionality reduction and prediction methods in time series data ming[D]. PhD Thesis. Hefei: University of Science and Technology of China, 2014.(in Chinese))
|
[2] |
王晓锋. 时间序列数据挖掘在医疗领域的应用[J]. 软件导刊, 2011,10(5): 123-124.(WANG Xiaofeng. Application of time series data mining in the medical field[J]. Software Guide,2011,10(5): 123-124.(in Chinese))
|
[3] |
黄超, 龚惠群. 金融领域时间序列挖掘技术研究[J]. 东南大学学报(哲学社会科学版), 2007,9(5): 36-39.(HUANG Chao, GONG Huiqun. A study of time series mining technology in financial field[J]. Journal of Southeast University(Philosophy and Social Science),2007,9(5): 36-39.(in Chinese))
|
[4] |
彭跃华, 于江龙. 非线性时间序列分析在气候中的应用研究进展[J]. 气象, 2009,32(10): 3-7.(PENG Yuehua, YU Jianglong. Research advances of nonlinear time series analysis applying in climatology[J]. Meteorological Monthly,2009,32(10): 3-7.(in Chinese))
|
[5] |
孟小峰, 杜志娟. 大数据融合研究: 问题与挑战[J]. 计算机研究与发展, 2016,53(2): 231-246.(MENG Xiaofeng, DU Zhijuan. Research on the big data fusion: issues and challenges[J]. Journal of Computer Research and Development,2016,53(2): 231-246.(in Chinese))
|
[6] |
何绪飞, 艾剑良, 宋智桃. 多元数据融合在无人机结构健康监测中的应用[J]. 应用数学和力学, 2018,39(4): 395-402.(HE Xufei, AI Jianliang, SONG Zhitao. Multi-Source data fusion for health monitoring of unmanned aerial vehicle structures[J]. Applied Mathematics and Mechanics,2018,39(4): 395-402.(in Chinese))
|
[7] |
LECUN Y, BENGIO Y, HINTON G. Deeplearning[J]. Nature,2015,521: 436-444.
|
[8] |
SHEN F, CHAO J, ZHAO J. Forecasting exchange rate using deep belief networks and conjugate gradient method[J]. Neurocomputing,2015,167: 243-253.
|
[9] |
KIM T Y, CHO S B. Predicting residential energy consumption using CNN-LSTM neural networks[J]. Energy,2019,182: 72-81.
|
[10] |
MA Q L, TIAN S, WEI J, et al. Attention-based spatio-temporal dependence learning network[J]. Information Sciences,2019,503: 92-108.
|
[11] |
KARIM F, MAJUMDAR S, DARABI H, et al. Multivariate LSTM-FCNs for time series classification[J]. Neural Networks,2019,116: 237-245.
|
[12] |
KARIM F, MAJUMDAR S, DARABI H, et al. LSTM fully convolutional networks for time series classification[J]. IEEE Access,2017,6(99): 1662-1669.
|
[13] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . 2018: 7132-7141.
|
[14] |
JING L, WANG T, ZHAO M, et al. An adaptive multi-sensor data fusion method based on deep convolutional neural networks for fault diagnosis of planetary gearbox[J]. Sensors,2017,17(3): 414. DOI: 10.3390/s17020414.
|
[15] |
GU Y L, LU W Q, QIN L Q, et al. Short-term prediction of lane-level traffic speeds: a fusion deep learning model[J]. Transportation Research Part C: Emerging Technologies,2019,106: 1-16.
|
[16] |
HASSANI H, MAHMOUDVAND R, ZOKAEI M, et al. On the separability between signal and noise in singular spectrum analysis[J]. Fluctuation and Noise Letters,2012,11(2): 1250014.
|
[17] |
ZHIGLJAVSKY A. Singular spectrum analysis for time series: introduction to this special issue[J]. Statistics and Its Interface,2010,3(3): 255-258.
|
[18] |
俞颂华. 卷积神经网络的发展与应用综述[J]. 信息通信, 2019(2): 39-43.(YU Songhua. The development and application of convolutional neural networks[J]. Information & Communications,2019(2): 39-43.(in Chinese))
|
[19] |
MALEK S, MELGANI F, BAZI Y. One-dimensional convolutional neural networks for spectroscopic signal regression[J]. Journal of Chemometrics,2018,32(5): e2977. DOI: 10.1002/cem.2977.
|
[20] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8): 1735-1780.
|
[21] |
HUANG C J, KUO P H. A deep CNN-LSTM model for particulate matter (PM2.5) forecasting in smart cities[J]. Sensors,2018,18(7): 2220.
|
[22] |
SAGHEER A, KOTB M. Time series forecasting of petroleum production using deep LSTM recurrent networks[J]. Neurocomputing,2019,323: 203-213.
|
[23] |
ABDEL-HAMID O, DENG L, YU D. Exploring convolutional neural network structures and optimization techniques for speech recognition[C]//Interspeech 2013. Lyon, France, 2013: 1173-1175.
|
[24] |
WEI B, JUN Y, RAO Y L, et al. A deep learning framework for financial time series using stacked autoencoders and long-short term memory[J].Plos One,2017, 12(7): 1-24.
|