CHEN Yafei, ZHENG Yunying. A Discontinuous Galerkin FEM for 2D Navier-Stokes Equations of Incompressible Viscous Fluids[J]. Applied Mathematics and Mechanics, 2020, 41(8): 844-852. doi: 10.21656/1000-0887.400379
Citation: CHEN Yafei, ZHENG Yunying. A Discontinuous Galerkin FEM for 2D Navier-Stokes Equations of Incompressible Viscous Fluids[J]. Applied Mathematics and Mechanics, 2020, 41(8): 844-852. doi: 10.21656/1000-0887.400379

A Discontinuous Galerkin FEM for 2D Navier-Stokes Equations of Incompressible Viscous Fluids

doi: 10.21656/1000-0887.400379
  • Received Date: 2019-12-24
  • Rev Recd Date: 2020-06-29
  • Publish Date: 2020-08-01
  • The incompressible Navier-Stokes equations are composed of the conservation law and the diffusion and constrained development equations. To test the numerical method, based on the unstructured grid, a discontinuous Galerkin scheme was established. The numerical results of the eddy current problem for different viscosity coefficients υ were discussed. The simulation results show that, the method has high precision and can solve the incompressible viscous fluid problem with moving interface, which makes the simulation boundary layer, the shear layer and the complex vortex solution be very effective, and the shock structure can be successfully extended to the numerical simulation of complex phenomena.
  • loading
  • [1]
    曹伟. 黏性不可压缩流体流动前沿的数值模拟[J]. 力学学报, 2004,〖STHZ〗 36(5): 583-588.(CAO Wei. Numerical simulation for the flow front of viscous incompressible fluid[J]. Chinese Journal of Theoretical and Applied Mechanics,2004, 36(5): 583-588.(in Chinese))
    [2]
    NAGRATH S, JANSEN K E, JR LAHEY R T. Computation of incompressible bubble dynamics with a stabilized finite element level set method[J]. Computer Methods in Applied Mechanics and Engineering,2005,194(42/44): 4565-4587.
    [3]
    马飞遥, 马逸尘, 沃维丰. 基于二重网格的定常Navier-Stokes方程的局部和并行有限元算法[J]. 应用数学和力学, 2007,28(1): 25-33.(MA Feiyao, MA Yichen,WO Weifeng. Local and parallel finite element algorithms based on two-grid discretization for steady Navier-Stokes equations[J]. Applied Mathematics and Mechanics,2007,28(1): 25-33.(in Chinese))
    [4]
    骆艳, 冯民富. 可压缩Navier-Stokes方程的压力梯度局部投影间断有限元法[J]. 应用数学和力学, 2008,〖STHZ〗 29(2): 157-168.(LUO Yan, FENG Minfu. Discontinuous element pressure gradient stabilizations for the compressible Navier-Stokes equations based on local projections[J]. Applied Mathematics and Mechanics,2008,29(2): 157-168.(in Chinese))
    [5]
    CHO M H, CHOI H G, YOO J Y. A direct reinitialization approach of level-set/splitting finite element method for simulating incompressible two-phase flows[J]. International Journal for Numerical Methods in Fluids,2011,67(11): 1637-1654.
    [6]
    HEIMANN F, ENGWER C, IPPISCH O, et al. An unfitted interior penalty discontinuous Galerkin method for incompressible Navier-Stokes two-phase flow[J]. International Journal for Numerical Methods in Fluids,2013,71(3): 269-293.
    [7]
    章争荣. 不可压缩黏性流动N-S方程直接耦合数值求解的流形方法[C]//中国力学大会: 2013论文摘要集. 西安, 2013.(ZHANG Zhengrong. Manifold method for directly coupled numerical solution of N-S equations of incompressible viscous flow [C]// China Mechanics Conference: 2013 Abstracts.Xi’an, 2013.(in Chinese))
    [8]
    郭虹平, 欧阳洁. 气液两相流的间断有限元模拟[J]. 计算物理, 2015,32(2): 160-168.(GUO Hongping, OUYANG Jie. Simulation of gas-liquid two-phase flows with discontinuous Galerkin method[J]. Chinese Journal of Computational Physics,2015,32(2): 160-168.(in Chinese))
    [9]
    秦望龙, 吕宏强, 伍贻兆, 等. 三维可压缩Navier-Stokes方程的间断Galerkin有限元方法研究[J]. 空气动力学学报, 2016,34(5): 617-624.(QIN Wanglong, Lü Hongqiang, WU Yizhao, et al. Discontinuous Galerkin method for 3-D compressible Navier-Stokes equations[J]. Acta Aerodynamica Sinica,2016,34(5): 617-624.(in Chinese))
    [10]
    AMROUCHE C, ESCOBEDO M, Ghosh A. Semigroup theory for the Stokes operator with Navier boundary condition on spaces[J]. Archive for Rational Mechanics & Analysis,2018,223(2): 1-60.
    [11]
    KIRK K, RHEBERGEN S. Analysis of a pressure-robust hybridized discontinuous Galerkin method for the stationary Navier-Stokes equations[J]. Journal of Scientific Computing,2019,81(2): 881-897.
    [12]
    KARNIADAKIS G E, ISRAELI M, ORSZAG S A. High-order splitting methods for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics,1991,97(2): 414-443.
    [13]
    YACOUBI A E, XU S, WANG Z J. A new method for computing particle collisions in Navier-Stokes flows[J]. Journal of Computational Physics,2019,399: 108919.
    [14]
    PAL S, HALOI R. On solution to the Navier-Stokes equations with Navier slip boundary condition for three dimensional incompressible fluid[J]. Acta Mathematica Scientia,2019,39(6): 1628-1638.
    [15]
    SHAHBAZI K, FISCHER P F, ETHIER C R. A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations[J]. Journal of Computational Physics,2007,222(1): 391-407.
    [16]
    JOHN V. Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder[J]. International Journal for Numerical Methods in Fluids,2010,44(7): 777-788.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1584) PDF downloads(341) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return