Citation: | CHEN Yafei, ZHENG Yunying. A Discontinuous Galerkin FEM for 2D Navier-Stokes Equations of Incompressible Viscous Fluids[J]. Applied Mathematics and Mechanics, 2020, 41(8): 844-852. doi: 10.21656/1000-0887.400379 |
[1] |
曹伟. 黏性不可压缩流体流动前沿的数值模拟[J]. 力学学报, 2004,〖STHZ〗 36(5): 583-588.(CAO Wei. Numerical simulation for the flow front of viscous incompressible fluid[J]. Chinese Journal of Theoretical and Applied Mechanics,2004, 36(5): 583-588.(in Chinese))
|
[2] |
NAGRATH S, JANSEN K E, JR LAHEY R T. Computation of incompressible bubble dynamics with a stabilized finite element level set method[J]. Computer Methods in Applied Mechanics and Engineering,2005,194(42/44): 4565-4587.
|
[3] |
马飞遥, 马逸尘, 沃维丰. 基于二重网格的定常Navier-Stokes方程的局部和并行有限元算法[J]. 应用数学和力学, 2007,28(1): 25-33.(MA Feiyao, MA Yichen,WO Weifeng. Local and parallel finite element algorithms based on two-grid discretization for steady Navier-Stokes equations[J]. Applied Mathematics and Mechanics,2007,28(1): 25-33.(in Chinese))
|
[4] |
骆艳, 冯民富. 可压缩Navier-Stokes方程的压力梯度局部投影间断有限元法[J]. 应用数学和力学, 2008,〖STHZ〗 29(2): 157-168.(LUO Yan, FENG Minfu. Discontinuous element pressure gradient stabilizations for the compressible Navier-Stokes equations based on local projections[J]. Applied Mathematics and Mechanics,2008,29(2): 157-168.(in Chinese))
|
[5] |
CHO M H, CHOI H G, YOO J Y. A direct reinitialization approach of level-set/splitting finite element method for simulating incompressible two-phase flows[J]. International Journal for Numerical Methods in Fluids,2011,67(11): 1637-1654.
|
[6] |
HEIMANN F, ENGWER C, IPPISCH O, et al. An unfitted interior penalty discontinuous Galerkin method for incompressible Navier-Stokes two-phase flow[J]. International Journal for Numerical Methods in Fluids,2013,71(3): 269-293.
|
[7] |
章争荣. 不可压缩黏性流动N-S方程直接耦合数值求解的流形方法[C]//中国力学大会: 2013论文摘要集. 西安, 2013.(ZHANG Zhengrong. Manifold method for directly coupled numerical solution of N-S equations of incompressible viscous flow [C]// China Mechanics Conference: 2013 Abstracts.Xi’an, 2013.(in Chinese))
|
[8] |
郭虹平, 欧阳洁. 气液两相流的间断有限元模拟[J]. 计算物理, 2015,32(2): 160-168.(GUO Hongping, OUYANG Jie. Simulation of gas-liquid two-phase flows with discontinuous Galerkin method[J]. Chinese Journal of Computational Physics,2015,32(2): 160-168.(in Chinese))
|
[9] |
秦望龙, 吕宏强, 伍贻兆, 等. 三维可压缩Navier-Stokes方程的间断Galerkin有限元方法研究[J]. 空气动力学学报, 2016,34(5): 617-624.(QIN Wanglong, Lü Hongqiang, WU Yizhao, et al. Discontinuous Galerkin method for 3-D compressible Navier-Stokes equations[J]. Acta Aerodynamica Sinica,2016,34(5): 617-624.(in Chinese))
|
[10] |
AMROUCHE C, ESCOBEDO M, Ghosh A. Semigroup theory for the Stokes operator with Navier boundary condition on spaces[J]. Archive for Rational Mechanics & Analysis,2018,223(2): 1-60.
|
[11] |
KIRK K, RHEBERGEN S. Analysis of a pressure-robust hybridized discontinuous Galerkin method for the stationary Navier-Stokes equations[J]. Journal of Scientific Computing,2019,81(2): 881-897.
|
[12] |
KARNIADAKIS G E, ISRAELI M, ORSZAG S A. High-order splitting methods for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics,1991,97(2): 414-443.
|
[13] |
YACOUBI A E, XU S, WANG Z J. A new method for computing particle collisions in Navier-Stokes flows[J]. Journal of Computational Physics,2019,399: 108919.
|
[14] |
PAL S, HALOI R. On solution to the Navier-Stokes equations with Navier slip boundary condition for three dimensional incompressible fluid[J]. Acta Mathematica Scientia,2019,39(6): 1628-1638.
|
[15] |
SHAHBAZI K, FISCHER P F, ETHIER C R. A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations[J]. Journal of Computational Physics,2007,222(1): 391-407.
|
[16] |
JOHN V. Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder[J]. International Journal for Numerical Methods in Fluids,2010,44(7): 777-788.
|