Citation: | DU Yuwei, LI Bing, SONG Qiankun. Event-Based State Estimation for Neural Network With Time-Varying Delay and Infinite-Distributed Delay[J]. Applied Mathematics and Mechanics, 2020, 41(8): 887-898. doi: 10.21656/1000-0887.400377 |
[1] |
WANG L, SONG Q, ZHAO Z, et al. Synchronization of two nonidentical complex-valued neural networks with leakage delay and time-varying delays[J]. Neurocomputing,2019,356: 52-59.
|
[2] |
WU H, FENG Y, TU Z, et al. Exponential synchronization of memristive neural networks with time delays[J]. Neurocomputing,2018,297: 1-7.
|
[3] |
舒含奇, 宋乾坤. 带有时滞的Clifford值神经网络的全局指数稳定性[J]. 应用数学和力学, 2017,38(5): 513-525.(SHU Hanqi, SONG Qiankun. Global stability of Clifford-valued recurrent neural network with mixed time-varing delays[J]. Applied Mathematics and Mechanics,2017,38(5): 513-525.(in Chinese))
|
[4] |
张平奎, 杨绪君. 基于激励滑模控制的分数阶神经网络的修正投影同步研究[J]. 应用数学和力学, 2018,39(3): 343-354.(ZHANG Pingkui, YANG Xujun. Modiffied projective synchronization of a class of fractional-order neural networks based on active sliding mode control[J]. Applied Mathematics and Mechanics,2018,39(3): 343-354.(in Chinese))
|
[5] |
闫欢, 赵振江, 宋乾坤. 具有泄漏时滞的复值神经网络的全局同步性[J]. 应用数学和力学, 2016,37(8): 832-841.(YAN Huan, ZHAO Zhenjiang, SONG Qiankun. Global synchronization of complex-valued neural network with leakage time delays[J]. Applied Mathematics and Mechanics,2016,37(8): 832-841.(in Chinese))
|
[6] |
SHAO H, LI H, ZHU C. New stability results for delayed neural networks[J]. Applied Mathematics and Computation,2017,311: 324-334.
|
[7] |
FUAD E, LUO Y, LIU Y, et al. State estimation for delayed neural networks with stochastic communication protocol: the finite-time case[J]. Neurocomputing,2018,281: 86-95.
|
[8] |
ARPIT B, ARUNA T, HARSHIT B, et al. A genetically optimized neural network model for multi-class classification [J]. Expert Systems With Applications,2016,60: 211-221.
|
[9] |
GABRIEL V, JUAN F D P, PABLO C, et al. Artificial neural networks used in optimization problems[J]. Neurcomputing,2018,272: 10-16.
|
[10] |
MARAT A, MEHMET O. Generation of cyclic/toroidal chaos by Hopfield neural networks[J]. Neurcomputing,2014,145: 230-239.
|
[11] |
YANG X, YUAN Q. Chaos and transient chaos in simple Hopfield neural networks[J]. Neurcomputing,2005,69(1): 232-241.
|
[12] |
CHEN Y, LIU Q, LU R, et al. Finite-time control of switched stochastic delayed systems[J]. Neurcomputing,2016,191: 374-379.
|
[13] |
LI X, YANG X, SONG S. Lyapunov conditions for finite-time stability of time-varying time-delay systems[J]. Automatica,2019,103: 135-140.
|
[14] |
HU J, SUI G. Fixed-time control of static impulsive neural networks with infinite distributed delay and uncertainty[J]. Communications in Nonlinear Science and Numerical Simulation,2019,78: 104848.
|
[15] |
ZHOU J, ZHAO T. State estimation for neural networks with two additive time-varying delay components using delay-product-type augmented Lyapunov-Krasovskii functionals[J]. Neurocomputing,2019,350: 155-169.
|
[16] |
LIU Y, SHEN B, LI Q. State estimation for neural networks with Markov-based nonuniform sampling: the partly unknown transition probability case[J]. Neurocomputing,2019,357: 261-270.
|
[17] |
LI Q, ZHU Q, ZHONG S, et al. State estimation for uncertain Markovian jump neural networks with mixed delays[J]. Neurocomputing,2016,182: 82-93.
|
[18] |
SYED A M, SARAVANAN S, ARIK S. Finite-time H∞ state estimation for switched neural networks with time-varying delays[J]. Neurocomputing,2016,207: 580-589.
|
[19] |
TAE H, JU H, HOYOUL J. Network-based H∞ state estimation for neural networks using imperfect measurement[J]. Applied Mathematics and Computation,2018,316: 205-214.
|
[20] |
DONG H, WANG Z, SHEN B, et al. Variance-constrained H∞ control for a class of nonlinear stochastic discrete time-varying systems: the event-triggered design[J]. Automatica,2016,72: 28-36.
|
[21] |
LIU Y, WANG Z, HE X, et al. Event-triggered least squares fault estimation with stochastic nonlinearities[J]. IFAC Proceedings Volumes,2014,47(3): 1855-1860.
|
[22] |
XIE Y, LIN Z. Event-triggered global stabilization of general linear systems with bounded controls[J]. Automatica,2019,107: 241-254.
|
[23] |
SUN Y, YANG G. Event-triggered state estimation for networked control systems with lossy network communication[J]. Information Sciences,2019,492: 1-12.
|
[24] |
LIU D, YANG G. Robust event-triggered control for networked control systems[J]. Information Sciences,2018,459: 168-197.
|
[25] |
WANG Z, HU J, MA L. Event-based distributed information fusion over sensor networks[J]. Information Fusion,2018,39: 53-55.
|
[26] |
YU H, HE Y, WU M. Delay-dependent state estimation for neural networks with time-varying delay[J]. Neurocomputing,2018,275: 881-887.
|
[27] |
WANG Z, LIU Y, LIU X. State estimation for jumping recurrent neural networks with discrete and distributed delays[J]. Neural Networks,2009,22(1): 41-48.
|
[28] |
ZHANG W, WANG Z, LIU Y, et al. Event-based state estimation for a class of complex networks with time-varying delays: a comparison principle approach[J]. Physics Letters A,2017,381(1): 10-18.
|
[29] |
YANG W, LEI L, YANG C. Event-based distributed state estimation under deception attack[J]. Neurocomputing,2017,270: 145-151.
|
[30] |
SHI D, CHEN T, MOHAMED D. Event-based state estimation of linear dynamic systems with unknown exogenous inputs[J]. Automatica,2016,69: 275-288.
|
[31] |
GUAN Z, DAVID J H, SHEN X. On hybrid impulsive and switching systems and application to nonlinear control[J]. IEEE Transactions on Automatic Control,2005,50(7): 1058-1062.
|
[32] |
BOYD S, EL GHAOUI L, FERON E, et al. Linear Matrix Inequalities in System and Control Theory [M]. Society for Industrial and Applied Mathematics, 1994.
|