HAO Yunli, CHENG Xiangyang, WANG Maohua. Type-2 Direct T-S Fuzzy Control of Niche Equality Indexes[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1210-1223. doi: 10.21656/1000-0887.400376
Citation: HAO Yunli, CHENG Xiangyang, WANG Maohua. Type-2 Direct T-S Fuzzy Control of Niche Equality Indexes[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1210-1223. doi: 10.21656/1000-0887.400376

Type-2 Direct T-S Fuzzy Control of Niche Equality Indexes

doi: 10.21656/1000-0887.400376
Funds:  The National Natural Science Foundation of China(General Program)(71573256)
  • Received Date: 2019-12-23
  • Rev Recd Date: 2020-05-25
  • Publish Date: 2020-11-01
  • Given the important role of niches in the ecosystem and the operability of type-2 direct T-S fuzzy control of the stability of a class of nonlinear systems with parameter uncertainties, the biological individuals’ evolutionary characteristics and adaptive behaviors were integrated with the direct T-S fuzzy type-2 control method, and the niche closeness function was used as a follow-up to type-2 T-S fuzzy control parts. Besides, a type-2 direct T-S fuzzy control method with biological characteristics was proposed to find the niche ecology. The self-adaptation rate of the factor reflects the degree of the adaptive use of the environment by biological individuals. Through comparison of simulation examples, this study reveals that type-2 is superior to type-1 in terms of stability and convergence. The study shows that the type-2 method is conducive to environmental harmony, ecological stability and sustainable development of ecological environment; in the meantime, this method gives fuzzy control a practical physical background.
  • loading
  • [1]
    李医民. 复杂生态系统的非线性分析与模糊容错控制[D]. 博士学位论文. 南京: 南京航空航天大学, 2004.(LI Yimin. Nonlinear analysis and fuzzy fault-tolerant control for complex ecosystems[D]. PhD Thesis. Nanjing: Nanjing University of Aeronautics and Astronautics, 2004.(in Chinese))
    [2]
    WANG J H. The models of niche and their application[J]. Ecological Modelling,1995,80(2/3): 279-291.
    [3]
    LI Y M, SUN X H. Modelling dynamic niche and community model by type-2 fuzzy set[J]. Ecological modelling,2008,211(3/4): 375-382.
    [4]
    PETER B, ANTOINE G. Niche dynamics in space and time[J]. Trends in Ecology & Evolution,2008,23(3): 149-158.
    [5]
    CAO G X. The definition of the niche by fuzzy set theory[J]. Ecological Modelling,1995,77(1): 65-71.
    [6]
    覃文杰, 关海艳, 王培培. 基于Allee效应诱导的Filippov生态系统的动力学行为研究[J]. 应用数学和力学, 2020,41(4): 438-447.(QIN Wenjie, GUAN Haiyan, Wang Peipei. Dynamic behaviors of Filippoveco systems induced by Allee effects[J]. Applied Mathematics and Mechanics,2020,41(4): 438-447.(in Chinese))
    [7]
    李医民, 郝云力. 基于Niche的间接T-S模糊自适应控制[J]. 系统工程与电子技术, 2011,10(33): 2282-2287.(LI Yimin, HAO Yunli. Indirect T-S fuzzy adaptive control based on Niche[J]. Systems Engineering and Electronics,2011,10(33): 2282-2287.(in Chinese))
    [8]
    李天泽, 郭明. 基于多切换传输的复变量混沌系统的有限时组合同步控制[J]. 应用数学和力学, 2019, 40(11): 1299-1308.(LI Tianze, GUO Ming. Finite-time combination synchronization control of complex-variable chaotic systems with multi-switching transmission[J]. Applied Mathematics and Mechanics,2019,40(11): 1299-1308.(in Chinese))
    [9]
    杜伟霞, 张思进, 殷珊. 一类对称碰撞系统的间歇混沌控制方法[J]. 应用数学和力学,2018,39(10): 1149-1158.(DU Weixia, ZHANG Sijin, YIN Shan. An intermittent chaos control method for a class of symmetric impact systems[J]. Applied Mathematics and Mechanics,2018,39(10): 1149-1158.(in Chinese))
    [10]
    张发祥. 输入输出具有非线性关系的Type-2仿生模糊控制[D]. 硕士学位论文. 镇江: 江苏大学, 2018.(ZHANG Faxiang. Type-2 bionic fuzzy control with nonlinear relation between input and output[D]. Master Thesis. Zhenjiang: Jiangsu University, 2018.(in Chinese))
    [11]
    WEN C, FENG H. Sliding mode fuzzy control for Takagi-Sugeno fuzzy systems with bilinear consequent part subject to multiple constraints[J]. Information Sciences,2016,327: 258-271.
    [12]
    ZHANG F X, LI Y M. Indirect adaptive fuzzy control of SISO nonlinear systems with input-output nonlinear relationship[J]. IEEE Transactions on Fuzzy Systems,2018,26(5): 2699-2708.
    [13]
    ZHANG F X, LI Y M. Direct adaptive type-2 fuzzy control[J]. Applied Intelligence,2018,48(3): 541-554.
    [14]
    ZHANG F X, LI Y M. Direct adaptive fuzzy control of SISO nonlinear systems with input-output nonlinear relationship[J]. International Journal of Fuzzy Systems,2018,20(4): 1069-1078.
    [15]
    杨铭, 李林廷, 高英. 多目标优化问题鲁棒有效解与真有效解之间的关系[J]. 应用数学和力学, 2019,40(12): 1364-1372.(YANG Ming, LI Linting, GAO Ying. Relations between robust efficient solutions and properly efficient solutions to multiobjective optimization problems[J]. Applied Mathematics and Mechanics,2019,40(12): 1364-1372.(in Chinese))
    [16]
    YANG X Z, LAM H K, WU L G. Membership-dependent stability conditions for type-1 and interval type-2 T-S fuzzy systems[J]. Fuzzy Sets and Systems,2019,356: 44-62.
    [17]
    XIE B K, LEE S J. An extended type-reduction method for general type-2 fuzzy sets[J]. IEEE Transactions on Fuzzy Systems,2017,25(3): 715-724.
    [18]
    贡崇颖, 李医民. 肌型血管生物数学模型的非线性状态反馈同步[J]. 数学的实践与认识, 2008,38(8): 103-108.(GONG Chongying, LI Yimin. Nonlinear state feedback synchronization of muscular vascular biological mathematical model[J]. Practice and Understanding of Mathematics,2008,38(8): 103-108.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1342) PDF downloads(219) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return