Citation: | HUANG Fei, MA Yongbin. Thermomechanical Responses of 3D Media Under Moving Heat Sources Based on Fractional-Order Strains[J]. Applied Mathematics and Mechanics, 2021, 42(4): 373-384. doi: 10.21656/1000-0887.400346 |
[1] |
LORD H W, SHULMAN Y A. A generalized dynamical theory of thermoelasticity[J]. Journal of the Mechanics and Physics of Solids,1967,15(5): 299-309.
|
[2] |
GREEN A E, LINDSAY K A. Thermoelasticity[J]. Journal of Elasticity,1972,2(1): 1-7.
|
[3] |
GREEN A E, NAGHDI P M. On undamped heat waves in an elastic solid[J]. Journal of Thermal Stresses ,1992,15(2): 252-264.
|
[4] |
MORSE R M, FESHBACH H. Methods of theoretical physics[J]. American Journal of Physics,1953,22(12): 5-12.
|
[5] |
MUSII R S. Equations in stresses for two- and three-dimensional dynamic problems of thermoelasticity in spherical coordinates[J]. Materials Science,2003,39(1): 48-53.
|
[6] |
PODNIL’CHUK IU N, KIRICHENKO A M. Thermoelastic deformation of a parabolic cylinder[J]. Vychislitel’naia i Prikladnaia Matematika,1989,67: 80-88.
|
[7] |
EZZAT M A, YOUSSEF H M. Three-dimensional thermal shock problem of generalized thermoelastic half-space[J]. Applied Mathematical Modelling,2010,34(11): 3608-3622.
|
[8] |
EZZAT M A, YOUSSEF H M. Two-temperature theory in three-dimensional problem for thermoelastic half space subjected to ramp type heating[J]. Mechanics of Composite Materials & Structures,2014,21(4): 293-304.
|
[9] |
EZZAT M A, YOUSSEF H M. Three-dimensional thermo-viscoelastic material[J]. Mechanics of Advanced Materials and Structures,2016,23(1): 108-116.
|
[10] |
YOUSSEF H M. Generalized thermoelastic infinite medium with cylindrical cavity subjected to moving heat source[J]. Mechanics Research Communications,2009,36(4): 487-496.
|
[11] |
YOUSSEF H M. Two-temperature generalized thermoelastic innite medium with cylindrical cavity subjected to moving heat source[J]. Archive of Applied Mechanics,2010,80(11): 1213-1224.
|
[12] |
YOUSSEF H M, AL-LEHAIBI E A N. The boundary value problem of a three-dimensional generalized thermoelastic half-space subjected to moving rectangular heat source[J]. Boundary Value Problems,2019,8: 1-15.
|
[13] |
POVSTENKO Y Z. Fractional heat conduction equation and associated thermal stresses[J]. Journal of Thermal Stresses,2004,28(1): 83-102.
|
[14] |
POVSTENKO Y Z. Fractional thermoelasticity[J]. Encyclopedia of Thermal Stresses,2015,219: 1778-1787.
|
[15] |
MA Y B, LIU Z Q, HE T H. Two-dimensional electromagneto-thermoelastic coupled problem under fractional order theory of thermoelasticity[J]. Journal of Thermal Stresses,2018,41(5): 645-657.
|
[16] |
MA Y B, HE T H. Investigation on a thermo-piezoelectric problem with temperature-dependent properties under fractional order theory of thermoelasticity[J]. Mechanics of Advanced Materials and Structures,2019,26(6): 552-558.
|
[17] |
MA Y B, PENG W. Dynamic response of an infinite medium with a spherical cavity on temperature-dependent properties subjected to a thermal shock under fractional-order theory of thermoelasticity[J]. Journal of Thermal Stresses,2018,41(3): 302-312.
|
[18] |
马永斌, 何天虎. 基于分数阶热弹性理论的含有球型空腔无限大体的热冲击动态响应[J]. 工程力学, 2016,33(7): 31-38.(MA Yongbin, HE Tianhu. Thermal shock dynamic response of an infinite body with a spherical cavity under fractional order theory of thermoelasticty[J]. Engineering Mechanics,2016,33(7): 31-38.(in Chinese))
|
[19] |
MA Y B, CAO L C, HE T H. Variable properties thermopiezoelectric problem under fractional thermoelasticity[J]. Smart Structures and Systems,2018,21(2): 163-170.
|
[20] |
YOUSSEF H M. Theory of generalized thermoelasticity with fractional order strain[J]. Journal of Vibration and Control,2015,22(18): 3840-3857.
|
[21] |
YOUSSEF H M, AL-LEHAIBI E A N. State-space approach to three-dimensional generalized thermoelasticity with fractional order strain[J]. Mechanics of Advanced Materials and Structures,2019,26(10): 878-885.
|
[22] |
XUE Z N, YU Y J, LI X Y, et al. Nonlocal thermoelastic analysis with fractional order strain in multilayered structures[J]. Journal of Thermal Stresses,2017,41(1): 80-97.
|
[23] |
包立平, 李文彦, 吴立群. 非Fourier温度场分布的奇摄动解[J]. 应用数学和力学, 2019,40(5): 68-77.(BAO Liping, LI Wenyan, WU Liqun. Singularly perturbed solutions of non-Fourier temperature field distribution in single-layer materials[J]. Applied Mathematics and Mechanics,2019,40(5): 68-77.(in Chinese))
|
[24] |
YOUSSEF H M. A two-temperature generalized thermoelastic medium subjected to a moving heat source and ramp-type heating: a state-space approach[J]. Journal of Mechanics of Materials and Structures,2010,4(9): 1637-1649.
|
[25] |
TZOU D Y. Macro- to Microscale Heat Transfer: the Lagging Behavior [M]. Washington DC: John Wiley & Sons, 1996.
|