Citation: | ZHOU Qiang, ZHANG Zhichun, LONG Zhilin, WU Jingxiang, HUANG Bin, JIN Hua. Vibration of Piezoelectric Nanobeams With Surface Effects[J]. Applied Mathematics and Mechanics, 2020, 41(8): 853-865. doi: 10.21656/1000-0887.400330 |
[1] |
ZHAO M H, WANG Z G, MAO S X. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope[J]. Nano Letters,2004,4(4): 587-590.
|
[2] |
RAMPRASAD R, SHI N. Dielectric properties of nanoscale HfO2 slabs[J]. Physical Review B,2005,72(5): 052107. DOI: 10.1103/PhysRevB.72.052107.
|
[3] |
WANG Z L. ZnO nanowire and nanobelt platform for nanotechnology[J]. Materials Science and Engineering: R,2009,64(3/4): 33-71.
|
[4] |
AIZPURUA J, BRYANT G W, RICHTER L J, et al. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy[J]. Physical Review B,2005,71(23): 235420. DOI: 10.1103/PhysRevB.71.235420.
|
[5] |
MARANGONI V S, CANCINO-BERNARDI J, ZUCOLOTTO V. Synthesis, physico-chemical properties, and biomedical applications of gold nanorods: a review[J].Journal of Biomedical Nanotechnology,2016,12(6): 1136-1158.
|
[6] |
HU X L, YU JC, GONG J M, et al.α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties[J]. Advanced Materials,2007,19(17): 2324-2329.
|
[7] |
NGUYEN N T, HUANG X Y, CHUAN T K. MEMS-micropumps: a review[J]. Journal of Fluids Engineering,2002,124(2): 384-392.
|
[8] |
GRAYSON A C R, SHAWGO R S, JOHNSON A M, et al. A BioMEMS review: MEMS technology for physiologically integrated devices[J]. Proceedings of the IEEE,2004,92(1): 6-21.
|
[9] |
张中太, 林元华, 唐子龙, 等. 纳米材料及其技术的应用前景[J]. 材料工程, 2000,3(7): 42-48.(ZHANG Zhongtai, LIN Yuanhua, TANG Zilong, et al. Nanometer materials & nanotechology and their application prospect[J]. Journal of Materials Engineering,2000,3(7): 42-48.(in Chinese))
|
[10] |
徐晓建, 邓子辰. 非局部因子和表面效应对微纳米材料振动特性的影响[J]. 应用数学和力学, 2013,34(1): 10-17.(XU Xiaojian, DENG Zichen. Surface effects of adsorption induced resonance analysis of micro/nanobeams via nonlocal elasticity[J]. Applied Mathematics and Mechanics,2013,34(1): 10-17.(in Chinese))
|
[11] |
YUE Y M, XU K Y, ZHANG X D, et al. Effect of surface stress and surface-induced stress on behavior of piezoelectric nanobeam[J]. Applied Mathematics and Mechanics,2018,39(7): 953-966.
|
[12] |
MILLER R E, SHENOY V B. Size-dependent elastic properties of nanosized structural elements[J]. Nanotechnology,2000,11(3): 139.
|
[13] |
ZHANG J, WANG C Y, CHOWDHURY R, et al. Small-scale effect on the mechanical properties of metallic nanotubes[J]. Applied Physics Letters,2012,101(9): 093109. DOI: 10.1063/1.4748975.
|
[14] |
GURTIN M E, MURDOCH A I. A continuum theory of elastic material surfaces[J]. Archive for Rational Mechanics and Analysis,1975,57(4): 291-323.
|
[15] |
EREMEYEV V A. On effective properties of materials at the nano-and microscales considering surface effects[J]. Acta Mechanica,2016,227(1): 29-42.
|
[16] |
HE L H, LIM C W, WU B S. A continuum model for size-dependent deformation of elastic films of nano-scale thickness[J]. International Journal of Solids and Structures,2004,41(3/4): 847-857.
|
[17] |
MICHALSKI P J, SAI N, MELE E J. Continuum theory for nanotube piezoelectricity[J]. Physical Review Letters,2005,95(11): 116803. DOI: 10.1103/PhysRevLett.95.116803.
|
[18] |
WANG G F, FENG X Q. Effect of surface stresses on the vibration and buckling of piezoelectric nanowires[J]. EPL(Europhysics Letters),2010,91(5): 56007. DOI: 10.1209/0295-5075/91/56007.
|
[19] |
YAN Z, JIANG L Y. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects[J]. Nanotechnology,2011,22(24): 245703. DOI: 10.1088/0957-4484/22/24/245703.
|
[20] |
YAN Z, JIANG L Y. Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires[J]. Journal of Physics D: Applied Physics,2011,44(7): 075404. DOI: 10.1088/0022-3727/44/7/075404.
|
[21] |
ZHENG S J, ZHAO X, WANG H T. Theoretical and finite element modeling of piezoelectric nanobeams with surface and flexoelectricity effects[J]. Mechanics of Advanced Materials and Structures,2019,26(15): 1261-1270.
|
[22] |
KE L L, WANG Y S, WANG Z D. Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory[J]. Composite Structures,2012,94(6): 2038-2047.
|
[23] |
WU J X, LI X F, TANG A Y, et al. Free and forced transverse vibration of nanowires with surface effects[J]. Journal of Vibration and Control,2017,23(13): 2064-2077.
|
[24] |
ROUHI H, EBRAHIMI F, ANSARI R, et al. Nonlinear free and forced vibration analysis of Timoshenko nanobeams based on Mindlin's second strain gradient theory[J]. European Journal of Mechanics a: Solids,2019,73: 268-281.
|
[25] |
AVDIAJ S, SETINA J, SYLA N. Modeling of the piezoelectric effectusing the finite-element method(FEM)[J]. Materiali in Tehnologije,2009,43(6): 283-291.
|
[26] |
邢沁妍, 杨青浩, 陆琛宇, 等. 杆件轴向受迫振动的Galerkin有限元EEP法自适应求解[J]. 应用数学和力学, 2019,40(9): 945-956.(XING Qinyan, YANG Qinghao, LU Chenyu, et al. An EEP adaptive strategy of the Galerkin FEM for axially forced vibration of bars[J]. Applied Mathematics and Mechanics,2019,40(9): 945-956.(in Chinese))
|
[27] |
MOHTASHAMI M, BENI Y T. Size-dependent buckling and vibrations of piezoelectric nanobeam with finite element method[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering,2019,43(3): 563-576.
|
[28] |
VISWANATH R N, KRAMER D, WEISSMLLER J. Variation of the surface stress-charge coefficient of platinum with electrolyte concentration[J]. Langmuir,2005,21(10): 4604-4609.
|
[29] |
FRIESEN C, DIMITROV N, CAMMARATA R C, et al. Surface stress and electrocapillarity of solid electrodes[J]. Langmuir,2001,17(3): 807-815.
|
[30] |
HAISS W, NICHOLS R J, SASS J K, et al. Linear correlation between surface stress and surface charge in anion adsorption on Au(111)[J]. Journal of Electroanalytical Chemistry,1998,452(2): 199-202.
|
[31] |
HUANG G Y, YU S W. Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring[J]. Physica Status Solidi(B),2006,243(4): R22-R24.
|
[32] |
CHEN T Y, CHIU M S, WENG C N. Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids[J]. Journal of Applied Physics,2006,100(7): 074308. DOI: 10.1063/1.2356094.
|
[33] |
HE Q L, LILLEY C M. Resonant frequency analysis of Timoshenko nanowires with surface stress for different boundary conditions[J]. Journal of Applied Physics,2012,112(7): 074322. DOI: 10.1063/1.4757593.
|
[34] |
吴金根, 高翔宇, 陈建国, 等. 高温压电材料、器件与应用[J]. 物理学报, 2018,67(20): 207701.(WU Jianguo, GAO Xiangyu, CHEN Jianguo, et al. Review of high temperature piezoelectric materials, devices, and applications[J]. Acta Physica Sinica,2018,67(20): 207701.(in Chinese))
|
[35] |
YAN Z, JIANG L Y. Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects[J]. Journal of Physics D: Applied Physics,2011,44(36): 365301. DOI: 10.1088/0022-3727/44/36/365301.
|
[36] |
WANG G F, FENG X Q. Effects of surface elasticity and residual surface tension on the natural frequency of microbeams[J]. Applied Physics Letters,2007,90(23): 231904. DOI: 10.1063/1.2746950.
|