LI Ruoyu, WANG Tianhong. Thermo-Mechanical Buckling Analysis of Thin Plates[J]. Applied Mathematics and Mechanics, 2020, 41(8): 877-886. doi: 10.21656/1000-0887.400308
Citation: LI Ruoyu, WANG Tianhong. Thermo-Mechanical Buckling Analysis of Thin Plates[J]. Applied Mathematics and Mechanics, 2020, 41(8): 877-886. doi: 10.21656/1000-0887.400308

Thermo-Mechanical Buckling Analysis of Thin Plates

doi: 10.21656/1000-0887.400308
  • Received Date: 2019-10-14
  • Rev Recd Date: 2020-01-05
  • Publish Date: 2020-08-01
  • Based on the RayleighRitz theory and the finite element method, the expressions of critical buckling loads on thin plates under thermomechanical coupling loads was derived. Under simultaneously imposed mechanical and thermal loads, the finite element program was compiled in the MATLAB environment to solve the buckling critical loads on thin plates. In the buckling analysis, the thermal load was applied at the nodes in the form of temperature field. The effects of mechanical load components and thermal load components on the instability of thin plates were analyzed through nonuniform temperature field loading. The results show that, with the increase or decrease of given thermomechanical loads, the critical load increases or decreases almost linearly.
  • loading
  • [1]
    NGUYEN N D, NGUYEN T K, NGUYEN T N, et al. New Ritz-solution shape functions for analysis of thermo-mechanical buckling and vibration of laminated composite beams[J]. Composite Structures,2018,184(15): 452-460.
    [2]
    SABZIKAR M, BOROUJERD Y. Thermal buckling of piezo-FGM shallow spherical shells[J]. Mechanica,2013,48(4): 887-899.
    [3]
    洪杰. 火焰筒结构局部热屈曲分析方法[J]. 北京航空航天大学学报, 2010,36(2): 248-252.(HONG Jie. Local thermal buckling analysis method of combustor liner[J]. Journal of Beijing University of Aeronautics and Astronautics,2010,36(2): 248-252.(in Chinese))
    [4]
    袁武, 王曦, 宋宏伟, 等. 轻质金属点阵夹层板热屈曲临界温度分析[J]. 固体力学学报, 2014,35(1): 1-7.(YUAN Wu, WANG Xi, SONG Hongwei, et al. Thermal buckling and its critical temperature analysis of sandwich panels with metal-truss core[J]. Chinese Journal of Solid Mechanics,2014,35(1): 1-7.(in Chinese))
    [5]
    李忱, 田雪坤, 王海任, 等. 薄球壳在均布外压与温度耦合作用下的热屈曲研究[J]. 应用数学和力学, 2015,36(9): 924-935.(LI Zhen, TIAN Xuekun, WAGN Hairen, et al. Study on thermal buckling of thin spherical shell under the coupling of reuniform external pressure and temperature[J]. Applied Mathematics and Mechanics,2015,36(9): 924-935.(in Chinese))
    [6]
    夏巍, 赵东伟, 冯宇鹏. 基于Mindlin横剪变形理论的功能梯度板热屈曲分析[J]. 应用力学学报, 2016,33(1): 13-18.(XIA Wei, ZHAO Dongwei, FENG Yupeng. Thermal buckling analysis of functionally graded plates based on Mindlin’s transverse shear deformation theory[J]. Chines Journal of Applied Mechanics,2016,33(1): 13-18.(in Chinese))
    [7]
    朱永安, 王璠, 刘人怀. 考虑横向剪切的对称圆柱正交异性层合扁球壳的热屈曲[J]. 应用数学和力学, 2008,29(3): 263-271.(ZHU Yongan, WANG Fan, LIU Renhuai. Thermal buckling of axisymmetrically laminated cylindrically orthotropic shallow spherical shells including transverse shear[J]. Applied Mathematics and Mechanics,2008,29(3): 263-271.(in Chinese))
    [8]
    吴晓, 赵均海, 黄志刚. 双模量材料圆板热弯曲及热屈曲的研究[J]. 应用力学学报, 2015,32(4): 549-555.(WU Xiao, ZHAO Junhai, HUANG Zhigang. Study on thermal bending and thermal buckling of circular plates with double modulus materials[J]. Chinese Journal of Applied Mechanics,2015,32(4): 549-555.(in Chinese))
    [9]
    彭凡, 顾勇军. 热环境中功能梯度圆柱薄壳分岔屈曲的边界约束效应[J]. 固体力学学报, 2011,32(5): 475-482.(PENG Fan, GU Yongjun. Effect of boundary constraints on bifurcation buckling of functionally graded material circular cylindrical shells in thermal environment[J]. Acta Mechanica Solida Sinica,2011,32(5): 475-482.(in Chinese))
    [10]
    KOCATURK T, AKBAS S D. Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading[J]. Structural Engineering and Mechanics,2012,41(6): 775-789.
    [11]
    LEVYAKOV S V. Elastica solution for thermal bending of a functionally graded beam[J]. Acta Mechanica,2013,224(8): 1731-1740.
    [12]
    JABERZADEH E, AZHARI M, BOROOMAND B. Thermal buckling of functionally graded skew and trapezoidal plates with different boundary conditions using the element-free Galerkin method[J]. European Journal of Mechanics A: Solids,2013,42: 18-26.
    [13]
    Rokhlin S I, Wang Y J. Analysis of boundary conditions for elastic wave interaction with an interface between two solids[J].The Journal of the Acoustical Society of America,1991,89(2): 503-515.
    [14]
    SUN L X, HSU T R. Thermal buckling of laminated composite plates with transverse shear deformation[J]. Computers & Structures,1990,36(5): 883-889.
    [15]
    CHANG J S. FEM analysis of buckling and thermal buckling of antisymmetric angle-ply laminates according to transverse shear and normal deformable high order displacement theory[J]. Computers & Structures,1990,37(6): 925-946.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1710) PDF downloads(423) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return