Citation: | SHAO Chongyang, PENG Zaiyun, LIU Fuping, WANG Jingjing. Berge Lower Semi-Continuity of Parametric Generalized Vector Quasi-Equilibrium Problems Under Improvement Set Mappings[J]. Applied Mathematics and Mechanics, 2020, 41(8): 912-920. doi: 10.21656/1000-0887.400307 |
[1] |
BLUM E, OETTLI W. From optimization and variational inequalities to equilibrium problems[J]. The Mathmatics Student,1994,63: 123-145.
|
[2] |
ANSARI Q H, OETTLI W, SCHLAGER D. A generalization of vectorial equilibria[J]. Mathematical Methods of Operations Research,1997,46(2): 147-152.
|
[3] |
BIANCHI M, HADJISAVVAS N, SCHAIBLE S. Vector equilibrium problems with generalized monotone bifunctions[J]. Journal of Optimization Theory and Applications,1997,92: 527-542.
|
[4] |
CHEN C R, LI S J, FANG Z M. On the solution semicontinuity to a parametric generalized vector quasivariational inequality[J]. Computers & Mathematics With Applications,2010,60(8): 2417-2425.
|
[5] |
曾静, 彭再云, 张石生. 广义强向量拟平衡问题解的存在性和Hadamard适定性[J]. 应用数学和力学, 2015,36(6): 651-658.(ZENG Jing, PENG Zaiyun, ZHANG Shisheng. Existence and Hadamard well-posedness of solutions to generalized strong vector quasi-equilibrium problems[J]. Applied Mathematics and Mechanics,2015,36(6): 651-658.(in Chinese))
|
[6] |
彭建文, 杨新民, 朱道立. 向量拟平衡问题系统及其应用[J]. 应用数学和力学, 2006,27(8): 963-970.(PENG Jianwen, YANG Xinmin, ZHU Daoli. System of vector quasi-equilibrium problems and its applications[J]. Applied Mathematics and Mechanics,2006,27(8): 963-970.(in Chinese))
|
[7] |
GONG X H. Continuity of the solution set to parametric weak vector equilibrium problems[J]. Journal of Optimization Theory and Applications,2008,139: 35-46.
|
[8] |
PENG Z Y, YANG X M. Semicontinuity of the solution mappings to weak generalized parametric Ky Fan inequality problems with trifunctions[J]. Optimization,2014,63(1): 447-457.
|
[9] |
PENG Z Y, ZHAO Y, YANG X M. Semicontinuity of approximate solution mappings toparametric set-valued weak vector equilibrium problems[J]. Numerical Functional Analysis and Optimization,2015,36: 481-500.
|
[10] |
PENG Z Y, PENG J W, LONG X J, et al. On the stability of solutions for semi-infinite vector optimization problems[J]. Journal of Global Optimization,2018,70: 55-69.
|
[11] |
ZHAO J. The lower semicontinuity of optimal solution sets[J]. Journal of Mathematical Analysis and Applications,1997,207(1): 240-254.
|
[12] |
ZHONG R Y, HUANG N J. On the stability of solution mapping for parametric generalized vector quasiequilibrium problems[J]. Computers & Mathematics With Applications,2012,63(4): 807-815.
|
[13] |
ANH L Q, HUNG N V. Gap functions and Hausdorff continuity of solution mapping to parametric strong vector quasiequilibrium problem[J]. Journal of Industrial and Management Optimization,2018,14(1): 65-79.
|
[14] |
邵重阳, 彭再云, 王泾晶, 等. 参数广义弱向量拟平衡问题解映射的H-连续性刻画[J]. 应用数学和力学, 2019,40(4): 452-462.(SHAO Chongyang, PENG Zaiyun, WANG Jingjing, et al. Characterizations of H-continuity for solution mapping to parametric generalized weak vector quasi-equilibrium problems[J]. Applied Mathematics and Mechanics,2019,40(4): 452-462.(in Chinese))
|
[15] |
ANH L Q, TRAN Q D, DINH V H. Stability for parametric vector quasi-equilibrium problems with variable cones[J]. Numerical Functional Analysis and Optimization,2019,40(4): 461-483.
|
[16] |
CHEN C R, ZHOU X, LI F, et al. Vector equilibrium problems under improvement sets and linear scalarization with stability applications[J]. Optimization Methods and Software,2016,31(6): 1240-1257.
|
[17] |
WANG J J, PENG Z Y, LIN Z, et al. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set[J]. Journal of Industrial and Management Optimization,2019,40(4): 461-483.
|
[18] |
CHICCO M, MIGNANEGO F, PUSILLO L, et al. Vector optimization problem via improvement sets[J]. Journal of Optimization Theory and Applications,2011,150: 516-529.
|
[19] |
AUBIN J P, EKELAND I. Applied Nonlinear Analysis [M]. New York: John Wiley and Sons, 1984.
|
[20] |
GPFERT A, RIAHI H, TAMMER C, et al. Variational Methods in Partially Ordered Spaces [M]. Berlin: Springer, 2003.
|