LI Tianze, GUO Ming, CHEN Xiangyong, ZHANG Han, MA Jianyu. Finite-Time Combination Synchronization Control of Complex-Variable Chaotic Systems With Multi-Switching Transmission[J]. Applied Mathematics and Mechanics, 2019, 40(11): 1299-1308. doi: 10.21656/1000-0887.400206
Citation: LI Tianze, GUO Ming, CHEN Xiangyong, ZHANG Han, MA Jianyu. Finite-Time Combination Synchronization Control of Complex-Variable Chaotic Systems With Multi-Switching Transmission[J]. Applied Mathematics and Mechanics, 2019, 40(11): 1299-1308. doi: 10.21656/1000-0887.400206

Finite-Time Combination Synchronization Control of Complex-Variable Chaotic Systems With Multi-Switching Transmission

doi: 10.21656/1000-0887.400206
Funds:  The National Natural Science Foundation of China(61403179;61877033)
  • Received Date: 2019-07-05
  • Rev Recd Date: 2019-10-08
  • Publish Date: 2019-11-01
  • The problem of finite-time combination synchronization for a class of complex-variable chaotic systems was investigated. Firstly, for the synchronization mode in signal transmission, the multi-switching synchronization behavior among multiple chaotic systems was analyzed. Secondly, based on the preset switching rules, the definition of finite-time combination synchronization was given. Then, according to the theory of finite-time stability, a kind of controller was designed to realize fast synchronization, and the sufficient conditions were given. Finally, results of numerical simulation and analysis verify the effectiveness of the proposed control scheme.
  • loading
  • [1]
    PECORA L M, CARROLL T L. Synchronization in chaotic systems[J]. Physical Review Letters,1990,64(8): 821-824.
    [2]
    王兴元. 混沌系统的同步及在保密通信中的应用[M]. 北京: 科学出版社, 2012.(WANG Xingyuan. Synchronization of Chaotic System and Its Application in Secure Communication [M]. Beijing: Science Press, 2012.(in Chinese))
    [3]
    任涛, 井元伟, 姜囡. 混沌同步控制方法及在保密通信中的应用[M]. 北京: 机械工业出版社, 2015.(REN Tao, JING Yuanwei, JIANG Nan. Chaos Synchronization Control Methods and Appications on Secure Communication [M]. Beijing: China Machine Press, 2015.(in Chinese))
    [4]
    张玮玮, 吴然超. 基于线性控制的分数阶混沌系统的对偶投影同步[J]. 应用数学和力学, 2016,37(7): 710-717.(ZHANG Weiwei, WU Ranchao. Dual projective synchronization of fractional-order chaotic systems with a linear controller[J]. Applied Mathematics and Mechanics,2016,37(7): 710-717.(in Chinese))
    [5]
    张玮玮, 陈定元, 吴然超, 等. 一类基于忆阻器分数阶时滞神经网络的修正投影同步[J]. 应用数学和力学, 2018,39(2): 239-248.(ZHANG Weiwei, CHEN Dingyuan, WU Ranchao, et al. Modified-projective-synchronization of memristor-based fractional-order delayed neural networks[J]. Applied Mathematics and Mechanics,2018,39(2): 239-248.(in Chinese))
    [6]
    CHEN X Y, QIU J L, CAO J D, et al. Hybrid synchronization behavior in an array of coupled chaotic systems with ring connection[J]. Neurocomputing,2016,173(3): 1299-1309.
    [7]
    CHEN X Y, PARK JU H, CAO J D, et al. Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances[J]. Applied Mathematics and Computation,2017,308: 161-173.
    [8]
    CHEN X Y, CAO J D, PARK JU H, et al. Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control[J]. Neurocomputing,2018,273: 9-21.
    [9]
    刘艳, 吕翎. N个异结构混沌系统的环链耦合同步[J]. 应用数学和力学, 2008,29(10): 1181-1190.(LIU Yan, L Ling. Synchronization of N different coupled chaotic systems with ring and chain connections[J]. Applied Mathematics and Mechanics,2008,29(10): 1181-1190.(in Chinese))
    [10]
    FOWLER A C, MCGUINNES M J, GIBBON J D. The complex Lorenz equations[J]. Physica D,1982,4: 139-163.
    [11]
    MAHMOUD G M, MAHMOUD E E, ARAFAB A A. Projective synchronization for coupled partially linear complex-variable systems with known parameters[J]. Mathematical Methods in the Applied Science,2017,40(4): 1214-1222.
    [12]
    LIU J, LIU S T. Complex modified function projective synchronization of complex chaotic systems with known and unknown complex parameters[J]. Applied Mathematical Modelling,2017,48: 440-450.
    [13]
    SUN J W, SHEN Y. Adaptive anti-synchronization of chaotic complex systems and chaotic real systems with unknown parameters[J]. Journal of Vibration and Control,2016,22: 2992-3003.
    [14]
    CHEN X Y, CAO J D, PARK JU H, et al. Finite-time complex function synchronization of multiple complex-variable chaotic systems with network transmission and combination mode[J]. Journal of Vibration and Control,2018,24(22): 5461-5471.
    [15]
    SUN J W, CUI G, WANG Y, et al. Combination complex synchronization of three chaotic complex systems[J]. Nonlinear Dynamics,2015,79(2): 953-965.
    [16]
    UCAR A, LONNGREN K E, BAI E W. Multi-switching synchronization of chaotic systems with active controllers[J]. Chaos, Solitons and Fractals,2008,38(1): 254-262.
    [17]
    WANG X Y, SUN P. Multi-switching synchronization of chaotic system with adaptive controllers and unknown parameters[J]. Nonlinear Dynamics,2011,63(4): 599-609.
    [18]
    ZHENG S. Multi-switching combination synchronization of three different chaotic systems via nonlinear control[J]. Optik,2016,127(21): 10247-10258.
    [19]
    VINCENT U E, SASEYI A O, MCCLINTOCK P V E. Multi-switching combination synchronization of chaotic systems[J]. Nonlinear Dynamics,2015,80(1/2): 845-854.
    [20]
    CHEN X Y, CAO J D, PARK JU H, et al. Finite-time multi-switching synchronization behavior for multiple chaotic systems with network transmission mode[J]. Journal of the Franklin Institute,2018,355(5): 2892-2911.
    [21]
    SUN J W, WANG Y, WANG Y W, et al. Finite-time synchronization between two complex-variable chaotic systems with unknown parameters via nonsingular terminal sliding mode control[J]. Nonlinear Dynamics,2017,85(2): 1105-1117.
    [22]
    SUN J W, WU Y Y, CUI G Z, et al. Finite-time real combination synchronization of three complex-variable chaotic systems with unknown parameters via sliding mode control[J]. Nonlinear Dynamics,2017,88(3): 1677-1690.
    [23]
    CHEN X Y, HUANG T W, CAO J D, et al. Finite-time multi-switching sliding mode synchronization for multiple uncertain complex chaotic systems with network transmission mode[J]. IET Control Theory and Applications,2019,13(9): 1246-1257.
    [24]
    ZHANG D Y, MEI J, MI P. Global finite-time synchronization of different dimensional chaotic systems[J]. Applied Mathematical Modelling,2017,48: 303-315.
    [25]
    CHEN X Y, CAO J D, PARK J H, et al. Finite-time control of multiple different-order chaotic systems with two network synchronization modes[J]. Circuits Systems and Signal Process,2018,37(3): 1081-1097.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (983) PDF downloads(349) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return