WU Feng, ZHONG Wanxie. Internal Mechanical Shock Wave: an Explanation of the Ocean Shock Current[J]. Applied Mathematics and Mechanics, 2019, 40(8): 823-839. doi: 10.21656/1000-0887.400138
Citation: WU Feng, ZHONG Wanxie. Internal Mechanical Shock Wave: an Explanation of the Ocean Shock Current[J]. Applied Mathematics and Mechanics, 2019, 40(8): 823-839. doi: 10.21656/1000-0887.400138

Internal Mechanical Shock Wave: an Explanation of the Ocean Shock Current

doi: 10.21656/1000-0887.400138
Funds:  The National Natural Science Foundation of China(51609034;11472076)
  • Received Date: 2019-04-16
  • Publish Date: 2019-08-01
  • With the Lagrangian coordinate and the Hamiltonian principle, the 2D displacement internal wave equation was derived. Based on the 2D displacement internal wave equation, the 2D internal mechanical shock wave in the 2-layer shallow water system was analyzed numerically and analytically. In terms of the numerical examples, it is found that the internal mechanical shock wave have 4 characteristics, i.e., high velocity, short duration, narrow space range and shock change of water surface, which means the ocean shock current is essentially an internal mechanical shock wave. The internal mechanical shock wave also provides an explanation for the ocean cliffs.
  • loading
  • [1]
    修日晨, 张自历, 刘爱菊. 海洋激流的观测实验及分析讨论[J]. 海洋学报, 2004,26(2): 118-124.(XIU Richeng, ZHANG Zili, LIU Aiju. Observational experiment,analysis and discussion of sea storm current[J]. Acta Oceanologica Sinica,2004,26(2): 118-124.(in Chinese))
    [2]
    修日晨, 顾玉荷, 刘爱菊, 等. 海洋激流的若干观测结果[J]. 海洋学报, 2000,22(4): 118-124.(XIU Richeng, GU Yuhe, LIU Aiju, et al. Some observational results of sea storm current[J]. Acta Oceanologica Sinica,2000,22(4): 118-124.(in Chinese))
    [3]
    刘爱菊, 修日晨, 张自历, 等. 江苏近海的激流[J]. 海洋学报, 2002,24(6): 120-126.(LIU Aiju, XIU Richeng, ZHANG Zili, et al. Storm current in the coastal waters of Jiangsu province, China[J]. Acta Oceanologica Sinica,2002,24(6): 120-126.(in Chinese))
    [4]
    彭畅, 陈可锋, 徐志峰. 南黄海辐射沙脊北部水域“激流”特征及成因机制研究[J]. 科学技术与工程, 2014,〖STHZ〗 14(5): 24-31.(PENG Chang, CHEN Kefeng, XU Zhifeng. Analyses on characteristics and genesis of storm current in north radial sand ridges area, South Yellow Sea[J]. Science Technology and Engineering,2014,14(5): 24-31.(in Chinese))
    [5]
    尹逊福, 刘爱菊, 张海波. 南海东部区域的海流状况Ⅱ: 海洋激流现象[J]. 黄渤海海洋, 2002,20(2): 7-11.(YIN Xunfu, LIU Aiju, ZHANG Haibo. Current conditions in the eastern South China Sea Ⅱ: ocean storm current phenomenon[J].Journal of Oceanography of Huanghai & Bohai Seas,2002,20(2): 7-11.(in Chinese))
    [6]
    方文东, 陈荣裕, 毛庆文. 南海北部大陆坡区的突发性强流[J]. 热带海洋, 2000,19(1): 70-75.(FANG Wendong, CHEN Rongyu, MAO Qingwen. Abrupt strong currents over continental slope of northern South China Sea[J]. Tropic Oceanology,2000,19(1): 70-75.(in Chinese))
    [7]
    钟万勰, 姚征. 位移法浅水孤立波[J]. 大连理工大学学报, 2006,〖STHZ〗 46(1): 151-156.(ZHONG Wanxie, YAO Zheng. Shallow water solitary waves based on displacement method[J]. Journal of Dalian University of Technology,2006,46(1): 151-156.(in Chinese))
    [8]
    钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2006.(ZHONG Wanxie. Symplectic Method in Applied Mechanics [M]. Beijing: Higher Education Press, 2006.(in Chinese))
    [9]
    钟万勰, 吴锋. 力-功-能-辛-离散-祖冲之方法论[M]. 大连: 大连理工大学出版社, 2016.(ZHONG Wanxie, WU Feng. Force-Work-Energy-Symplecticity-Discretization-ZU Chongzhi’s Methodology [M]. Dalian: Dalian University of Technology Press, 2016.(in Chinese))
    [10]
    钟万勰, 吴锋, 孙雁. 浅水机械激波[J]. 应用数学和力学, 2017,38(8): 845-852.(ZHONG Wanxie, WU Feng, SUN Yan. Shallow water mechanical shock wave[J]. Applied Mathematics and Mechanics,2017,38(8): 845-852.(in Chinese))
    [11]
    吴锋. 基于位移的水波数值模拟: 辛方法[M]. 大连: 大连理工大学, 2017.(WU Feng. Numerical Modeling of Water Waves Based on Displacement: Symplectic Method [M]. Dalian: Dalian University of Technology Press, 2017.(in Chinese))
    [12]
    姚征, 钟万勰. 位移法浅水波方程的解及其特性[J]. 计算机辅助工程, 2016,25(2): 21-25.(YAO Zheng, ZHONG Wanxie. Solutions and characteristics of shallow water equation based on displacement method[J]. Computer Aided Engineering,2016,25(2): 21-25.(in Chinese))
    [13]
    吴锋, 钟万勰. 浅水问题的约束Hamilton变分原理及祖冲之类保辛算法[J]. 应用数学和力学, 2016,37(1): 3-15.(WU Feng, ZHONG Wanxie. The constrained Hamilton variational principle for shallow water problems and the Zu-type symplectic algorithm[J]. Applied Mathematics and Mechanics,2016,37(1): 3-15. (in Chinese))
    [14]
    KINNMARK I. The Shallow Water Wave Equations: Formulation, Analysis and Application [M]. Berlin: Springer, 1986.
    [15]
    WU F, ZHONG W X. On displacement shallow water wave equation and symplectic solution[J]. Computer Methods in Applied Mechanics and Engineering,2017,318: 431-455.
    [16]
    STOKER J J. Water Waves: the Mathematical Theory With Applications [M]. New York: Interscience Publishers LTD, 1957.
    [17]
    COURANT R, FRIEDRICHS K O. Supersonic Flow and Shock Waves [M]. New York: Wiely, 1948.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1602) PDF downloads(641) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return