LI Bowen, DING Jieyu, LI Yanan. An L-Stable Method for Differential-Algebraic Equations of Multibody System Dynamics[J]. Applied Mathematics and Mechanics, 2019, 40(7): 768-779. doi: 10.21656/1000-0887.400038
Citation: LI Bowen, DING Jieyu, LI Yanan. An L-Stable Method for Differential-Algebraic Equations of Multibody System Dynamics[J]. Applied Mathematics and Mechanics, 2019, 40(7): 768-779. doi: 10.21656/1000-0887.400038

An L-Stable Method for Differential-Algebraic Equations of Multibody System Dynamics

doi: 10.21656/1000-0887.400038
Funds:  The National Natural Science Foundation of China(11472143;11772166)
  • Received Date: 2019-01-17
  • Rev Recd Date: 2019-02-09
  • Publish Date: 2019-07-01
  • An L-stable method over time intervals for differential-algebraic equations of multibody system dynamics was presented. The solution scheme was established based on equidistant nodes and non-equidistant nodes such as Chebyshev and Legendre nodes. According to Ehle’s theorem and conjecture, the unknown matrix and vector in the L-stable solution formula were obtained through comparison with the Padé approximation. The Newtonian iteration method was used during the solution process. The planar 2-link manipulator system was taken as an example, and the results from the L-stable method were compared for different node numbers in the time interval and different steps in the simulation, with those from the classic Runge-Kutta method. The comparison shows that, the proposed method has the advantages of good stability and high precision, and is suitable for multibody system dynamics simulation under long-term conditions.
  • loading
  • [1]
    DAHLQUIST G. A special stability problem for linear multistep methods[J]. BIT Numerical Mathematics,1963,3(1): 27-43.
    [2]
    WIDLUND O B. A note on unconditionally stable linear multistep methods[J]. BIT Numerical Mathematics,1967,7(1): 65-70.
    [3]
    GEAR C W. The Automatic Integration of Stiff Ordinary Differential Equations [M]. Amsterdam: North Holland Publishing Company, 1963.
    [4]
    DAHLQUIST G. Error Analysis for a Class of Methods for Stiff Non-Linear Initial Value Problems [M]. Berlin: Springer-Verlag, 1975.
    [5]
    BUTCHER J C. A stability property of implicity Runge-Kutta methods[J]. BIT Numerical Mathematics,1975,15(4): 358-361.
    [6]
    BURRAGE K, BUTCHER J C. Stability criteria for implicit Runge-Kutta methods[J]. SIAM Journal on Numerical Analysis,1979,16(1): 46-57.
    [7]
    LI S F. Nonlinear stability of general linear methods[J]. Journal of Computational Mathematics,1991,9(2): 97-104.
    [8]
    EHLE B L. A-stable methods and Pade approximations to the exponential[J]. SIAM Journal on Mathematical Analysis,1973,4(4): 671-680.
    [9]
    HAIRER E, WANNER G. Solving Ordinary Differential Equations Ⅱ: Stiff and Differential-Algebraic Problems [M]. 2nd ed. Beijing: Science Press, 2006.
    [10]
    邓子辰, 李庆军. 精细指数积分法在卫星编队飞行动力学中的应用[J]. 北京大学学报(自然科学版), 2016,52(4): 669-675.(DENG Zichen, LI Qingjun. Precise exponential integrator and its application in dynamics of spacecraft formation flying[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2016,52(4): 669-675.(in Chinese))
    [11]
    彭海军, 李飞, 高强, 等. 多体系统轨迹跟踪的瞬时最优控制保辛方法[J]. 力学学报, 2016,48(4): 784-791.(PENG Haijun, LI Fei, GAO Qiang, et al. Symplectic method for instantaneous optimal control of multibody system trajectory tracking[J]. Chinese Journal of Theoretical and Applied Mechanics,2016,48(4): 784-791.(in Chinese))
    [12]
    阚子云, 彭海军, 陈飙松, 等. 开放式多体系统动力学仿真算法软件研发(Ⅱ): DAEs求解算法对比[J]. 计算力学学报, 2015,32(6): 707-715.(KAN Ziyun, PENG Haijun, CHEN Biaosong, et al. Study of open simulation algorithm software for multibody system dynamics (Ⅱ): comparison of algorithms for solving DAEs[J]. Chinese Journal of Computational Mechanics,2015,32(6): 707-715.(in Chinese))
    [13]
    丁洁玉, 潘振宽. 多体系统动力学微分-代数方程广义- α 投影法[J]. 工程力学, 2013,30(4): 380-384.(DING Jieyu, PAN Zhenkuan. Generalized- α projection method for differential-algebraic equations of multibody dynamics[J]. Engineering Mechanics,2013,〖STHZ〗 30(4): 380-384.(in Chinese))
    [14]
    徐方暖, 王博, 邓子辰, 等. 基于四元数方法的绳系机器人姿态控制[J]. 应用数学和力学, 2017,38(12): 1309-1318.(XU Fangnuan, WANG Bo, DENG Zichen, et al. Attitude control of targets captured by tethered space robots based on the quaternion theory[J]. Applied Mathematics and Mechanics,2017,38(12): 1309-1318.(in Chinese))
    [15]
    文立平, 杨春花, 文海洋. 非线性泛函积分微分方程多步Runge-Kutta方法的稳定性和渐近稳定性[J]. 湘潭大学自然科学学报, 2018,40(1): 1-5.(WEN Liping, YANG Chunhua, WEN Haiyang. Stability and asymptotic stability of multistep Runge-Kutta methods for nonlinear functional-integro-differential equations[J]. Natural Science Journal of Xiangtan University,2018,40(1): 1-5.(in Chinese))
    [16]
    SHAMPINE L F, WATTS H A. A-stable block implicit one-step methods[J]. BIT Numerical Mathematics,1972,12(2): 252-266.
    [17]
    袁兆鼎, 费景高, 刘德贵. 刚性常微分方程初值问题的数值解法[M]. 北京: 科学出版社, 2016.(YUAN Zhaoding, FEI Jinggao, LIU Degui. Numerical Solution of Initial Value Problems for Stiff Ordinary Differential Equations [M]. Beijing: Science Press, 2016.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1329) PDF downloads(443) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return