LI Cong, NIU Zhongrong, HU Zongjun, HU Bin, CHENG Changzheng. Computation of Total Stress Fields for Cracked Bi-Material Structures With the Extended Boundary Element Method[J]. Applied Mathematics and Mechanics, 2019, 40(8): 926-937. doi: 10.21656/1000-0887.400013
Citation: LI Cong, NIU Zhongrong, HU Zongjun, HU Bin, CHENG Changzheng. Computation of Total Stress Fields for Cracked Bi-Material Structures With the Extended Boundary Element Method[J]. Applied Mathematics and Mechanics, 2019, 40(8): 926-937. doi: 10.21656/1000-0887.400013

Computation of Total Stress Fields for Cracked Bi-Material Structures With the Extended Boundary Element Method

doi: 10.21656/1000-0887.400013
Funds:  The National Natural Science Foundation of China(11272111;11772114)
  • Received Date: 2019-01-03
  • Rev Recd Date: 2019-05-17
  • Publish Date: 2019-08-01
  • According to the theory of linear elasticity, the conventional numerical methods are difficult to calculate the singular stress fields of cracked bi-material structures. An extended boundary element method (XBEM) was proposed to calculate the singular stress fields near crack tips. Firstly, a small sector around the crack tip was removed from the cracked structure. The displacement and stress components in the small sector were expressed as asymptotic series expansions with respect to the radial coordinate from the tip. The amplitude coefficients in the asymptotic series expansions were taken as the basic unknowns. Secondly, the boundary element method was used to analyze the cracked structure without the small sector. Consequently, the complete displacement and stress fields of the cracked structure were solved through combination of the boundary element analysis and the asymptotic series expansions near the tip. For the 2 domains near the crack tip of a bonded bi-material, reasonable terms shall be chosen in the asymptotic series expansions respectively. The computation results show the accuracy and effectiveness of the XBEM for determining the stress fields of the cracked bi-material structures.
  • loading
  • [1]
    沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006: 3-5.(SHEN Guanlin, HU Gengkai. Mechanics of Composites [M]. Beijing: Tsinghua University Press, 2006: 3-5.(in Chinese))
    [2]
    葛仁余, 牛忠荣, 程长征, 等. 边界元法分析二维线弹性裂纹扩展[J]. 计算物理, 2015,32(3): 310-320.(GE Renyu, NIU Zhongrong, CHENG Changzheng, et al. Propagation analysis of two-dimensional linear elastic crack with boundary element method[J]. Chinese Journal of Computational Physics,2015,32(3): 310-320.(in Chinese))
    [3]
    王振, 余天堂. 模拟三维裂纹问题的自适应多尺度扩展有限元法[J]. 工程力学, 2016,33(1): 32-38.(WANG Zhen, YU Tiantang. Adaptive multiscale extended finite element method for modeling three-dimensional crack problems[J].Engineering Mechanics,2016,33(1): 32-38.(in Chinese))
    [4]
    秦洪远, 黄丹, 刘一鸣, 等. 基于改进型近场动力学方法的多裂纹扩展分析[J]. 工程力学, 2017,34(12): 31-38.(QIN Hongyuan, HUANG Dan, LIU Yiming, et al. An extended peridynamic approach for analysis of multiple crack growth[J]. Engineering Mechanics,2017,34(12): 31-38.(in Chinese))
    [5]
    江守燕, 杜成斌, 顾冲时, 等. 求解双材料界面裂纹应力强度因子的扩展有限元法[J]. 工程力学, 2015,32(3): 22-27, 40.(JIANG Shouyan, DU Chengbin, GU Chongshi, et al. Computation of stress intensity factors for interface cracks between two dissimilar materials using extended finite element methods[J]. Engineering Mechanics,2015,32(3): 22-27, 40.(in Chinese))
    [6]
    吕君, 柴国钟. 双材料裂纹问题的积分方程方法[J]. 浙江工业大学学报, 2017,45(2): 130-136, 158.(L Jun, CHAI Guozhong. Integral equation methods for the problem of bi-material crack[J]. Journal of Zhejiang University of Technology,2017,45(2): 130-136, 158.(in Chinese))
    [7]
    牛忠荣, 葛仁余, RECHO N, 等. 平面V形切口塑性应力奇异性分析[J]. 中国科学: 物理学 力学 天文学, 2014,44(1): 79-90.(NIU Zhongrong, GE Renyu, RECHO N, et al. Evaluation of plastic stress singularities of plane V-notches and cracks in hardening materials[J]. Scientia Sinica: Physica, Mechanica & Astronomica,2014,44(1): 79-90.(in Chinese))
    [8]
    WILLIAMS M L. Stress singularities resulting from various boundary conditions in angular corners of plates in extension[J]. Journal of Applied Mechanics,1952,19(1): 287-298.
    [9]
    李有堂, 王勇. 功能梯度材料V型缺口根部裂纹场强特性分析[J]. 兰州理工大学学报, 2018,44(4): 162-166.(LI Youtang, WANG Yong. Characteristic analysis of crack stress field intensity at V-shaped notch root of functionally gradient materials[J]. Journal of Lanzhou University of Technology,2018,44(4): 162-166.(in Chinese))
    [10]
    MIRSAYAR MM, ALIHA M R M, SAMAEI A T. On fracture initiation angle near bi-material notches-effects of first non-singular stress term[J]. Engineering Fracture Mechanics,2014,119: 124-131.
    [11]
    李俊林, 张少琴, 杨维阳, 等. 正交异性双材料界面裂纹尖端应力场[J]. 应用数学和力学, 2008,29(8): 947-953.(LI Junlin, ZHANG Shaoqin, YANG Weiyang, et al. Study of stress fields near interface crack tip of double dissimilar orthotropic composite materials[J]. Applied Mathematics and Mechanics,2008,29(8): 947-953.(in Chinese))
    [12]
    AYATOLLAHI M R, MIRSAYAR M M, NEJATI M. Evaluation of first non-singular stress term in bi-material notches[J]. Computational Materials Science,2010,50(2): 752-760.
    [13]
    范海军, 肖盛燮. Ⅱ型平面应力裂纹线场弹塑性极坐标精确解[J]. 应用力学学报, 2015,32(4): 543-548, 701.(FAN Haijun, XIAO Shengxie. Elastic-plastic exact solution of polar coordinates on mode Ⅱ plane stress cracking in stress field[J]. Chinese Journal of Applied Mechanics,2015,32(4): 543-548, 701.(in Chinese))
    [14]
    LAN X, NODA N A, MITHINAKA K, et al. The effect of material combinations and relative crack size to the stress intensity factors at the crack tip of a bi-material bonded strip[J]. Engineering Fracture Mechanics,2011,78(14): 2572-2584.
    [15]
    牛忠荣, 程长征, 胡宗军, 等. V形切口应力强度因子的一种边界元分析方法[J]. 力学学报, 2008,40(6): 849-857.(NIU Zhongrong, CHENG Changzheng, HU Zongjun, et al. Boundary element analysis of the stress intensity factors for V-notched Structures[J]. Chinese Journal of Theoretical and applied Mechanics,2008,40(6): 849-857.(in Chinese))
    [16]
    王有成. 工程中的边界元方法[M]. 北京: 中国水利水电出版社, 1996.(WANG Youcheng. Boundary Element Method in Engineering [M]. Beijing: China Water & Power Press, 1996.(in Chinese))
    [17]
    高效伟, 郑保敬, 刘健. 功能梯度材料动态断裂力学的径向积分边界元法[J]. 力学学报, 2015,47(5): 868-873.(GAO Xiaowei, ZHENG Baojing, LIU Jian. Dynamic fracture analysis of functionally graded materials by radial integration BEM[J]. Chinese Journal of Theoretical and Applied Mechanics,2015,47(5): 868-873.(in Chinese))
    [18]
    YUUKI R, CHAO S B. Efficient boundary element analysis of stress intensity factors for interface cracks in dissimilar materials[J]. Engineering Fracture Mechanics,1989,34(1): 179-188.
    [19]
    李聪, 牛忠荣, 胡斌, 等. 扩展边界元法分析切口和裂纹结构应力场的准确性[J]. 固体力学学报, 2018,39(5): 539-551.(LI Cong, NIU Zhongrong, HU Bin, et al. Accuracy of the extended boundary element method analyzing the stress fields of V-notched/cracked structures[J]. Chinese Journal of Solid Mechanics,2018,39(5): 539-551.(in Chinese))
    [20]
    张明, 姚振汉, 杜庆华. 双材料界面裂纹应力强度因子的边界元分析[J]. 应用力学学报, 1999,16(1): 21-26.(ZHANG Ming, YAO Zhenhan, DU Qinghua. Boundary element analysis of stress intensity factors of bimaterial interface crack[J]. Chinese Journal of Applied Mechanics,1999,16(1): 21-26.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1320) PDF downloads(383) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return