ZHOU Xiaomin, SUN Zheng. Simulation of Non-Newtonian Fluid Flows With the Material Point Method[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1135-1146. doi: 10.21656/1000-0887.390349
Citation: ZHOU Xiaomin, SUN Zheng. Simulation of Non-Newtonian Fluid Flows With the Material Point Method[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1135-1146. doi: 10.21656/1000-0887.390349

Simulation of Non-Newtonian Fluid Flows With the Material Point Method

doi: 10.21656/1000-0887.390349
Funds:  The National Natural Science Foundation of China(11902127)
  • Received Date: 2018-12-12
  • Rev Recd Date: 2019-01-14
  • Publish Date: 2019-10-01
  • Simulation of the non-Newtonian fluid flow is an interesting problem for engineers. As a relatively new particle-based method, the material point method (MPM), combining the advantages of both the Lagrangian algorithm and the Eulerian algorithm, has been widely and effectively used to solve complex engineering problems. The plane Poiseuille flow and Couette flow of the shear thickening and shear thinning cross fluid and power-law fluid were studied with the artificial state equations for the MPM. The results show that, the simulation with the MPM for the Newtonian fluid is in good agreement with the theoretical solution and the MPM simulates the shear thinning and shearing thickening of the non-Newtonian fluid exactly. The results confirm the applicability of the MPM for simulation of the non-Newtonian fluid flow and expand the application field of the MPM.
  • loading
  • [1]
    CROCHET M J, DAVIES A R, WALTERS K. Numerical Simulation of Non-Newtonian Flow [M]. Amsterdam: Elsevier, 2012.
    [2]
    BAAIJENS F P T, HULSEN M A, ANDERSON P D. The use of mixed finite element methods for viscoelastic fluid flow analysis[M]// Encyclopedia of Computational Mechanics.John Wiley & Sons, 2018: 481-498.
    [3]
    张茂林, 吴清松, 李传亮, 等. 非牛顿流体的差分方法研究[J]. 西南石油学院学报, 2000,22(1): 5-8.(ZHANG Maolin, WU Qingsong, LI Chuanliang, et al. Research on the formulation of finite difference methods for non Newtonian fluids in porous media[J]. Journal of Southwest Petroleum Institute,2000,22(1): 5-8.(in Chinese))
    [4]
    袁世伟, 赖焕新. 幂律非牛顿流体流动的有限体积算法[J]. 华东理工大学学报(自然科学版), 2013,39(3): 364-369. (YUAN Shiwei, LAI Huanxin. A finite volume method for calculating flows of power-law non-Newton fluids[J]. Journal of East China University of Science and Technology(Natural Science Edition),2013,39(3): 364-369.(in Chinese))
    [5]
    GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society,1977,181(3): 375-389.
    [6]
    LIU G, LIU M B. Smoothed Particle Hydrodynamics: a Meshfree Particle Method [M]. World Scientific Publishing Company, 2003.
    [7]
    徐丞君, 徐胜利, 刘庆源. 修正压力梯度粒子近似SPH方法计算大密度比界面流动[J]. 应用数学和力学, 2019,40(1): 20-35.(XU Chengjun, XU Shengli, LIU Qingyuan. Modified particle approximation to pressure gradients in the SPH algorithm for interfacial flows with high density ratios[J]. Applied Mathematics and Mechanics,2019,40(1): 20-35.(in Chinese))
    [8]
    ZHOU G, GE W, LI J. Smoothed particles as a non-Newtonian fluid: a case study in Couette flow[J]. Chemical Engineering Science,2010,65(6): 2258-2262.
    [9]
    FAN X, TANNER R I, ZHENG R. Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow[J]. Journal of Non-Newtonian Fluid Mechanics,2010,165(5/6): 219-226.
    [10]
    SHAMSODDINI R, SEFID M, FATEHI R. Incompressible SPH modeling and analysis of non-Newtonian power-law fluids, mixing in a microchannel with an oscillating stirrer[J]. Journal of Mechanical Science and Technology,2016,30(1): 307-316.
    [11]
    CHAUSSONNET G, KOCH R, BAUER H, et al. Smoothed particle hydrodynamics simulation of an air-assisted atomizer operating at high pressure: influence of non-Newtonian effects[J]. Journal of Fluids Engineering,2018,140(6): 61301. DOI: 10.1115/1.4038753.
    [12]
    SULSKY D, CHEN Z, SCHREYER H. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering,1994,118(1): 179-196.
    [13]
    SULSKY D, ZHOU S, SCHREYER H. Application of a particle-in-cell method to solid mechanics[J]. Computer Physics Communications,1995,87(1): 236-252.
    [14]
    廉艳平, 张帆, 刘岩, 等. 物质点法的理论和应用[J]. 力学进展, 2013,43(2): 237-264.(LIAN Yanping, ZHANG Fan, LIU Yan, et al. Material point method and its applications[J]. Advances in Mechanics,2013,43(2): 237-264. (in Chinese))
    [15]
    王宇新, 李晓杰, 王小红, 等. 炸药爆轰物质点法三维数值模拟[J]. 应用数学和力学, 2015,36(2): 198-206.(WANG Yuxin, LI Xiaojie, WANG Xiaohong, et al. 3D simulation of explosive detonation with the material point method[J]. Applied Mathematics and Mechanics,2015,36(2): 198-206. (in Chinese))
    [16]
    MA S, ZHANG X, QIU X M. Comparison study of MPM and SPH in modeling hypervelocity impact problems[J]. International Journal of Impact Engineering,2009,36(2): 272-282.
    [17]
    张雄, 刘岩, 张帆, 等. 极端变形问题的物质点法研究进展[J]. 计算力学学报, 2017,34(1): 1-16.(ZHANG Xiong, LIU Yan, ZHANG Fan, et al. Recent progress of material point method for extreme deformation problems[J]. Chinese Journal of Computational Mechanics,2017,34(1): 1-16.(in Chinese))
    [18]
    SUN Z, LI H, GAN Y, et al. Material point method and smoothed particle hydrodynamics simulations of fluid flow problems: a comparative study[J]. Progress in Computational Fluid Dynamics,2018,18(1): 1-18.
    [19]
    陈文芳, 蔡扶时. 非牛顿流体的一些本构方程[J]. 力学学报, 1983,19(1): 16-26.(CHEN Wenfang, CAI Fushi. Some constitutive equations for non-Newtonian fluids[J]. Chinese Journal of Theoretical and Applied Mechanics,1983,19(1): 16-26.(in Chinese))
    [20]
    陈文芳. 非牛顿流体力学[M]. 北京: 科学出版社, 1984.(CHEN Wenfang. The Mechanics of Non-Newtonian Fluids [M]. Beijing: Science Press, 1984.(in Chinese))
    [21]
    周光坰, 严宗毅, 许世雄, 等. 流体力学(上)[M]. 北京: 高等教育出版社, 2001.(ZHOU Guangjiong, YAN Zongyi, XU Shixiong, et al. The Fluid Mechanics [M]. Beijing: Higher Education Press, 2001.(in Chinese))
    [22]
    LI J G, HAMAMOTO Y, LIU Y, et al. Sloshing impact simulation with material point method and its experimental validations[J]. Computers & Fluids,2014,103: 86-99.
    [23]
    MORRIS J P, FOX P J, ZHU Y. Modeling low Reynolds number incompressible flows using SPH[J]. Journal of Computational Physics,1997,136(1): 214-226.
    [24]
    MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics,1994,110(2): 399-406.
    [25]
    XIANG H, CHEN B. Simulating non-Newtonian flows with the moving particle semi-implicit method with an SPH kernel[J]. Fluid Dynamics Research,2015,47(1): 15511. DOI: 10.1088/0169-5983/47/1/015511.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1311) PDF downloads(427) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return