Citation: | GUO Nanxin, ZHANG Shougui. A Self-Adaptive Uzawa Block Relaxation Algorithm for Free Boundary Problems[J]. Applied Mathematics and Mechanics, 2019, 40(6): 682-693. doi: 10.21656/1000-0887.390347 |
[1] |
韩渭敏, 程晓良. 变分不等式简介: 基本理论、数值分析及应用[M]. 北京: 高等教育出版社, 2007.(HAN Weimin, CHENG Xiaoliang. Introduction to Variational Inequality: Element Theory, Numerical Analysis and Applications [M]. Beijing: Higher Education Press, 2007.(in Chinese))
|
[2] |
GLOWINSKI R. Numerical Methods for Nonlinear Variational Problems [M]. Berlin: Springer-Verlag, 2008.
|
[3] |
饶玲. 单调迭代结合虚拟区域法求解非线性障碍问题[J]. 应用数学和力学, 2018,39(4): 485-492.(RAO Ling. Monotone iterations combined with fictitious domain methods for numerical solution of nonlinear obstacle problems[J]. Applied Mathematics and Mechanics,2018,39(4): 485-492.(in Chinese))
|
[4] |
LIN Y, CRYER C W. An alternating direction implicit algorithm for the solution of linear complementarity problems arising from free boundary problems[J]. Applied Mathematics and Optimization,1985,13(1): 1-17.
|
[5] |
BURMAN E, HANSBO P, LARSON M G,et al. Galerkin least squares finite element method for the obstacle problem[J]. Computer Methods in Applied Mechanics and Engineering,2017,313: 362-374.
|
[6] |
LI X, YUAN D M. Asymptotic approximation method for elliptic variational inequality of first kind[J]. Applied Mathematics and Mechanics(English Edition),2014,35(3): 381-390.
|
[7] |
YUAN D M, CHENG X L. A meshless method for solving the free boundary problem associated with unilateral obstacle[J]. International Journal of Computer Mathematics,2012,89(1): 90-97.
|
[8] |
王光辉, 王烈衡. 基于对偶混合变分形式的Uzawa型算法[J]. 应用数学和力学, 2002,23(7): 682-688.(WANG Guanghui, WANG Lieheng. Uzawa type algorithm based on dual mixed variational formulation[J]. Applied Mathematics and Mechanics,2002,23(7): 682-688.(in Chinese))
|
[9] |
GLOWINSKI R, TALLEC P L E. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics [M]. Philadelphia: SIAM, 1989.
|
[10] |
KOKO J. Uzawa block relaxation method for the unilateral contact problem[J]. Journal of Computational and Applied Mathematics,2011,235(8): 2343-2356.
|
[11] |
HE B S, LIAO L Z, WANG S L. Self-adaptive operator splitting methods for monotone variational inequalities[J]. Applied Numerical Mathematics,2003,94(4): 715-737.
|
[12] |
钟艳丽, 严月月, 张守贵. 求解单侧障碍问题的自适应投影方法[J]. 重庆师范大学学报(自然科学版), 2018,35(1): 70-76.(ZHONG Yanli, YAN Yueyue, ZHANG Shougui. A self-adaptive projection method for the unilateral obstacle problem[J]. Journal of Chongqing Normal University(Natural Scienes),2018,35(1): 70-76.(in Chinese))
|
[13] |
ZHANG S G. Projection and self-adaptive projection methods for the Signorini problem with the BEM[J]. Applied Mathematics and Computation,2017,74(6): 1262-1273.
|
[14] |
ZHANG S G, LI X L. A self-adaptive projection method for contact problems with the BEM[J]. Applied Mathematical Modelling,2018,55: 145-159.
|
[15] |
MARKUS B, SCHRODER A. A posteriori error control of hp-finite elements for variational inequalities of the first and second kind[J]. Computers & Mathematics With Applications,2015,70(12): 2783-2802.
|
[16] |
ZOSSO D, OSTING B, XIA M, et al. An efficient primal-dual method for the obstacle problem[J]. Journal of Scientific Computing,2017,73(1): 416-437.
|