WANG Xiaoe, LIN Xiaolin, LI Jianquan. Dynamic Analysis of a Class of HIV-1 Infection Models With Pulsed Immunotherapy[J]. Applied Mathematics and Mechanics, 2019, 40(7): 728-740. doi: 10.21656/1000-0887.390334
Citation: WANG Xiaoe, LIN Xiaolin, LI Jianquan. Dynamic Analysis of a Class of HIV-1 Infection Models With Pulsed Immunotherapy[J]. Applied Mathematics and Mechanics, 2019, 40(7): 728-740. doi: 10.21656/1000-0887.390334

Dynamic Analysis of a Class of HIV-1 Infection Models With Pulsed Immunotherapy

doi: 10.21656/1000-0887.390334
Funds:  The National Natural Science Foundation of China(11371031;11371369)
  • Received Date: 2018-11-29
  • Rev Recd Date: 2019-05-06
  • Publish Date: 2019-07-01
  • Based on a class of HIV-1 infection immunotherapy models, an HIV-1 infection model with pulsed immunotherapy was addressed. The non-negativity and uniform boundedness of the solutions to the pulsed immunotherapy model were studied with the pulsed differential equation theory. According to the Floquet multiplier theory and the comparison theorem for differential equations, the threshold conditions for the local and global asymptotic stability of the infection-free periodic solution as well as uniform persistence of HIV-1 were obtained. Through numerical simulation, the therapeutic effects of 3 different treatment regimens were compared, and the effectiveness of the pulsed immunotherapy was verified. The numerical results show that, the virus can be effectively controlled or eliminated theoretically when the drug input is large enough or the dosing interval is short properly.
  • [1]
    AIDS, Information on HIV[EB/OL]. [2018-11-29]. https://aidsinfo.nih.gov/clinical-trials.
    [2]
    KIRSCHNER D E, WEBB G F. Immunotherapy of HIV-1 infection[J]. Journal of Biological Systems,1998,6(1): 71-83.
    [3]
    PERELSON A S, NELSON P W. Mathematical analysis of HIV-1 dynamics in vivo[J]. Society for Industrial and Applied Mathematics,1999,41(1): 3-44.
    [4]
    CALLAWAY D S, PERELSON A S. HIV-1 infection and low steady state viral loads[J]. Bulletin of Mathematical Biology,2002,64(1): 29-64.
    [5]
    LEENHEER P D, SMITH H L. Virus dynamics: a global analysis[J]. SIAM Journal on Applied Mathematics,2003,63(4): 1313-1327.
    [6]
    HUANG Y X, ROSENKRANZ S L, WU H L. Modeling HIV dynamics and antiviral response with consideration of time-varying drug exposures, adherence and phenotypic sensitivity[J]. Mathematical Biosciences,2003,184(2): 165-186.
    [7]
    SMITH R J, WAHL L M. Distinct effects of protease and reverse transcriptase inhibition in an immunological model of HIV-1 infection with impulsive drug effects[J]. Bulletin of Mathematical Biology,2004,66(5): 1259-1283.
    [8]
    SMITH R J, WAHL L M. Drug resistance in an immunological model of HIV-1 infection with impulsive drug effects[J]. Bulletin of Mathematical Biology,2005,67(4): 783-813.
    [9]
    GAO T, WANG W D, LIU X N. Mathematical analysis of an HIV model with impulsive antiretroviral drug doses[J].Mathematics and Computers in Simulation,2012, 82(4): 653-665.
    [10]
    MIRON R E, SMITH R J. Resistance to protease inhibitors in a model of HIV-1 infection with impulsive drug effects[J]. Bulletin of Mathematical Biology,2014,76(1): 59-97.
    [11]
    宋保军, 娄洁, 文清芝. 使用T-20治疗HIV-1患者的不同策略的数学建模与研究[J]. 应用数学和力学, 2011,32(4): 400-416.(SONG Baojun, LOU Jie, WEN Qingzhi. Modelling two different therapy strategies for drug T-20 on HIV-1 patients[J]. Applied Mathematics and Mechanics,2011,32(4): 400-416.(in Chinese))
    [12]
    韩溢. 具有脉冲免疫因子的HIV模型的稳定性研究[J]. 重庆工商大学学报(自然科学版), 2013, 30(3): 77-82.(HAN Yi. Research on stability for an HIV model with impulsive releasing immune factor[J]. Journal of Chongqing Technology and Business University(Natural Science ), 2013,30(3): 77-82.(in Chinese))
    [13]
    ROY P K, CHATTERJEE A N, LI X Z. The effect of vaccination to dendritic cell and immune cell interaction in HIV disease progression[J]. International Journal of Biomathematics,2016,9(1): 1-20.
    [14]
    CHATTERJEE A N, ROY P K. Anti-viral drug treatment along with immune activator IL-2: a control-based mathematical approach for HIV infection[J]. International Journal of Control,2012, 85(2): 220-237.
    [15]
    JOLY M, ODLOAK D. Modeling interleukin-2-based immunotherapy in AIDS pathogenesis[J]. Journal of Theoretical Biology,2013,335(4): 57-78.
    [16]
    ABRAMS D, LEVY Y, LOSSO M H. Interleukin-2 therapy in patients with HIV infection[J]. New England Journal of Medicine,2009,361(16): 1548-1559.
    [17]
    BELL C J M, SUN Y L, NOWAK U M, et al. Sustained in vivo signaling by long-lived IL-2 induces prolonged increases of regulatory T cells[J]. Journal of Autoimmunity,2015,56: 66-80.
    [18]
    READ S W, LEMPICKI R A, MASCIO M D, et al. CD4 T cell survival after intermittent interleukin-2 therapy is predictive of an increase in the CD4 T cell count of HIV-infected patients[J]. The Journal of Infectious Diseases,2008,198(6): 843-850.
    [19]
    胡晓虎, 唐三一. 血管外给药的非线性房室模型解的逼近[J]. 应用数学和力学, 2014,35(9): 1033-1045.(HU Xiaohu, TANG Sanyi. Approximate solutions to the nonlinear compartmental model for extravascular administration[J]. Applied Mathematics and Mechanics,35(9): 1033-1045.(in Chinese))
    [20]
    KIRSCHNER D E, WEBB G F. A mathematical model of combined drug therapy of HIV infection[J]. Journal of Theoretical Medicine,2014,1(1):25-34.
    [21]
    宋新宇, 郭红建, 师向云. 脉冲微分方程理论及其应用[M]. 北京: 科学出版社, 2011.(SONG Xinyu, GUO Hongjian, SHI Xiangyun. Impulsive Differential Equation Theory and Its Application [M]. Beijing: Science Press, 2011.(in Chinese))
    [22]
    陆启韶. 常微分方程的定性方法和分叉[M]. 北京: 北京航空航天大学出版社, 1989.(LU Qishao. Qualitative Methods and Bifurcations of Ordinary Differential Equations [M]. Beijing: Beihang University Press, 1989.(in Chinese))
    [23]
    FONDA A. Uniformly persistent semidynamical systems[J]. Proceedings of the American Mathematical Society,1988,104(1): 111-116.
    [24]
    白振国. 周期传染病模型的基本再生数[J]. 工程数学学报, 2013,30(2): 175-183.(BAI Zhenguo. Basic reproduction number of periodic epidemic models[J]. Chinese Journal of Engineering Mathematics,2013,30(2): 175-183.(in Chinese))
  • Relative Articles

    [1]LI Changtong. Analysis of the Predator-Prey Model With Nonlinear Impulsive Control[J]. Applied Mathematics and Mechanics, 2020, 41(5): 568-580. doi: 10.21656/1000-0887.400226
    [2]GUO Yong, XIE Jian-hua. N-S Bifurcation of an Oscillator With Dry Friction in 1∶4 Strong Resonance[J]. Applied Mathematics and Mechanics, 2013, 34(1): 18-26. doi: 10.3879/j.issn.1000-0887.2013.01.003
    [3]CHEN Li-juan, LU Shi-ping. Homoclinic Orbit of the Motion Model for a Single Space Plasma Particle[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1258-1265. doi: 10.3879/j.issn.1000-0887.2013.12.004
    [4]XU Chang-jin, TANG Xian-hua, LIAO Mao-xin. Local Hopf Bifurcation and Global Existence of Periodic Solutions in a TCP System[J]. Applied Mathematics and Mechanics, 2010, 31(6): 745-755. doi: 10.3879/j.issn.1000-0887.2010.06.012
    [5]LI Guo-cheng, XUE Xiao-ping, SONG Shi-ji. On the Periodic Solutions of Differential Inclusions and Applications[J]. Applied Mathematics and Mechanics, 2004, 25(2): 150-158.
    [6]Lü Jin-hu, ZHANG Zi-fan, ZHANG Suo-chun. Bifurcation Analysis of a Mitotic Model of Frog Eggs[J]. Applied Mathematics and Mechanics, 2003, 24(3): 253-266.
    [7]CAO Xian-bing. On the Existence of Periodic Solutions for Nonlinear System With Multiple Delays[J]. Applied Mathematics and Mechanics, 2003, 24(1): 105-110.
    [8]LU Shi-ping, GE Wei-gao. Problem of Periodic Solutions for Neutral Functional Differential Equation[J]. Applied Mathematics and Mechanics, 2002, 23(12): 1269-1275.
    [9]LI Ji-bin, DUAN Wan-suo. Periodic Stream Lines in the Three-Dimensional Square Cell Pattern[J]. Applied Mathematics and Mechanics, 2001, 22(2): 191-198.
    [10]WANG Mao-nan, XU Zhen-yuan. On the Homoclinic Orbits in a Class of Two-Degree of Freedom Systems Under the Resonance Conditions[J]. Applied Mathematics and Mechanics, 2001, 22(3): 295-306.
    [11]XIA Tie-cheng, ZHANG Hong-qing, YAN Zhen-ya. New Explicit and Exact Travelling Wave Solutions for a Class of Nonlinear Evolution Equations[J]. Applied Mathematics and Mechanics, 2001, 22(7): 701-705.
    [12]DONG Yu-jun. A Simplified Proof to a Theorem by DINH Tongren on Periodic Solutions of Duffing Equations[J]. Applied Mathematics and Mechanics, 2001, 22(9): 997-1000.
    [13]Fang Hui. The Existence of Periodic Solutions of Impulsive Differential Equations of Mixed Type[J]. Applied Mathematics and Mechanics, 2000, 21(3): 260-264.
    [14]MA Shi-wang, WANG Zhi-cheng, YU Jian-she. The Existence of Periodic Solutions for Nonlinear Systems of First-Order Differential Equations at Resonance[J]. Applied Mathematics and Mechanics, 2000, 21(11): 1156-1164.
    [15]Huang Xiankai, Dong Qinxi. On the Existence of Periodic Solutions to Higher Dimensional Periodic System with Delay[J]. Applied Mathematics and Mechanics, 1999, 20(8): 847-850.
    [16]Cemil Tun, . On the Boundedness and Periodicity of the Solutions of a Certain Vector Differential Equation of Third-Order[J]. Applied Mathematics and Mechanics, 1999, 20(2): 153-160.
    [17]Cao Jinde. Periodic Solutions of a Class of Higher Order Neutral Type Equations[J]. Applied Mathematics and Mechanics, 1999, 20(6): 607-612.
    [18]Si Jianguo. Discussion on the Periodic Solutions for Linear Equation of Neutral Type with Constant Coefficients[J]. Applied Mathematics and Mechanics, 1996, 17(1): 29-37.
    [19]Jin Jun. Research of the Periodic Solution for a Class of Nonlinear Differential Equations[J]. Applied Mathematics and Mechanics, 1996, 17(4): 369-375.
    [20]Zhao Jie-min, Huang Ke-lei, Lu Qishao. The Existence of Periodic Solutions for a Class of Functional Differential Equations and Their Application[J]. Applied Mathematics and Mechanics, 1994, 15(1): 49-58.
  • Cited by

    Periodical cited type(2)

    1. 李畅通. 一类具有非线性脉冲的捕食与被捕食系统的定性分析. 应用数学和力学. 2020(05): 568-580 . 本站查看
    2. 朱万闯,季春霖,邓柯. 近似Bayes计算前沿研究进展及应用. 应用数学和力学. 2019(11): 1179-1203 . 本站查看

    Other cited types(1)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.7 %FULLTEXT: 21.7 %META: 76.5 %META: 76.5 %PDF: 1.8 %PDF: 1.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.0 %其他: 6.0 %China: 0.6 %China: 0.6 %San Mateo: 0.2 %San Mateo: 0.2 %上海: 0.7 %上海: 0.7 %临汾: 0.1 %临汾: 0.1 %北京: 1.7 %北京: 1.7 %南京: 0.2 %南京: 0.2 %南宁: 0.2 %南宁: 0.2 %台州: 0.1 %台州: 0.1 %吕梁: 0.2 %吕梁: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %太原: 0.5 %太原: 0.5 %广州: 0.2 %广州: 0.2 %张家口: 1.7 %张家口: 1.7 %森尼韦尔: 0.1 %森尼韦尔: 0.1 %武汉: 0.2 %武汉: 0.2 %波士顿: 0.1 %波士顿: 0.1 %深圳: 0.2 %深圳: 0.2 %温州: 0.2 %温州: 0.2 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %石家庄: 0.2 %石家庄: 0.2 %纳什维尔: 0.1 %纳什维尔: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 5.2 %芒廷维尤: 5.2 %苏州: 0.1 %苏州: 0.1 %西宁: 74.0 %西宁: 74.0 %西安: 1.2 %西安: 1.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.3 %运城: 0.3 %郑州: 4.8 %郑州: 4.8 %都伯林: 0.1 %都伯林: 0.1 %重庆: 0.1 %重庆: 0.1 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %其他ChinaSan Mateo上海临汾北京南京南宁台州吕梁哥伦布太原广州张家口森尼韦尔武汉波士顿深圳温州湖州湘潭石家庄纳什维尔绵阳芒廷维尤苏州西宁西安贵阳运城郑州都伯林重庆长沙长治香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1202) PDF downloads(382) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return