Citation: | DAI Dexuan, WANG Shaowei. Linear Stability Analysis on Thermo-Bioconvection of Gyrotactic Microorganisms in a Horizontal Porous Layer Saturated by a Power-Law Fluid[J]. Applied Mathematics and Mechanics, 2019, 40(8): 856-865. doi: 10.21656/1000-0887.390298 |
[1] |
WAGER H. On the effect of gravity upon the movements and aggregation of euglena viridis, ehrb, and other microorganisms[J]. Philosophical Transactions of the Royal Society B: Biological Sciences,1911,201(1): 333-390.
|
[2] |
KESSLER J O. Hydrodynamic focusing of motile algal cells[J]. Nature,1985,313(5999): 218-220.
|
[3] |
KUZNETSOV A V, AVRAMENKO A A. Stability analysis of bioconvection of gyrotactic motile microorganisms in a fluid saturated porous medium[J]. Transport in Porous Media,2003,53(1): 95-104.
|
[4] |
NIELD D A, KUZNETSOV A V. The onset of bio-thermal convection in a suspension of gyrotactic microorganisms in a fluid layer: oscillatory convection[J]. International Journal of Thermal Sciences,2006,45(10): 990-997.
|
[5] |
ZHAO M, XIAO Y, WANG S. Linear stability of thermal-bioconvection in a suspension of gyrotactic micro-organisms[J]. International Journal of Heat and Mass Transfer,2018,126: 95-102.
|
[6] |
BARLETTA A, NIELD D A. Linear instability of the horizontal throughflow in a plane porous layer saturated by a power-law fluid[J]. Physics of Fluids,2011,23(1): 013102.
|
[7] |
BARLETTA A, STORESLETTEN L. Linear instability of the vertical throughflow in a horizontal porous layer saturated by a power-law fluid[J]. International Journal of Heat and Mass Transfer,2016,99: 293-302.
|
[8] |
罗艳, 李鸣, 杨大勇. 微通道内电渗压力混合驱动幂律流体流动模拟[J]. 应用数学和力学, 2016,37(4): 373-381.(LUO Yan, LI Ming, YANG Dayong. Simmulation of mixed electroosmotic and pressure-driven flows of power-law fluids in microchannels[J]. Applied Mathematics and Mechanics,2016,37(4): 373-381.(in Chinese))
|
[9] |
田兴旺, 王平, 徐士鸣. 颗粒堆积多孔介质内幂律流体的流动阻力特性[J]. 哈尔滨工业大学学报, 2017,49(1): 126-132.(TIAN Xingwang, WANG Ping, XU Shiming. Flow resistance characteristics of power law fluid flow through granular porous medium[J]. Journal of Harbin Institute of Technology,2017,49(1): 126-132.(in Chinese))
|
[10] |
杨旭, 梁英杰, 孙洪广, 等. 空间分数阶非Newton流体本构及圆管流动规律研究[J]. 应用数学和力学, 2018,39(11): 1213-1226.(YANG Xu, LIANG Yingjie, SUN Hongguang, et al. A study on the constitutive relation and the flow of spatial fractional non-Newtonian fluid in circular pipes[J]. Applied Mathematics and Mechanics,2018,39(11): 1213-1226.(in Chinese))
|
[11] |
CHRISTOPHER R H, MIDDLEMAN S. Power-law flow through a packed tube[J]. Industrial & Engineering Chemistry Fundamentals,1965,4(4): 422-426.
|
[12] |
GRAY D D, GIORGINI A. The validity of the Boussinesq approximation for liquids and gases[J]. International Journal of Heat and Mass Transfer,1976,19(5): 545-551.
|
[13] |
PEDLEY T J, KESSLER J O. The orientation of spheroidal microorganisms swimming in a flow field[J]. Proceedings of the Royal Society of London,1987,231(1262): 47-70.
|
[14] |
NARAYANA M, SIBANDA P, MOTSA S S, et al. Linear and nonlinear stability analysis of binary Maxwell fluid convection in a porous medium[J]. Heat and Mass Transfer,2012,48(5): 863-874.
|
[15] |
WANG S, TAN W. Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium heated from below[J]. Physics Letters A,2008,372(17): 3046-3050.
|