WU Feng, ZHONG Wanxie. A Note on Symplectic Water Wave Dynamics[J]. Applied Mathematics and Mechanics, 2019, 40(1): 1-7. doi: 10.21656/1000-0887.390254
Citation: WU Feng, ZHONG Wanxie. A Note on Symplectic Water Wave Dynamics[J]. Applied Mathematics and Mechanics, 2019, 40(1): 1-7. doi: 10.21656/1000-0887.390254

A Note on Symplectic Water Wave Dynamics

doi: 10.21656/1000-0887.390254
Funds:  The National Natural Science Foundation of China(11472076;51609034;51278298)
  • Received Date: 2018-09-25
  • Publish Date: 2019-01-01
  • The numerical method for the simulations of fully nonlinear water waves was discussed. The symplectic perturbation method, developed in Symplectic Water Wave Dynamics,was extended to compute the pressure of the nonlinear water wave. Numerical examples show that the proposed method can be used to analyze the nonlinear evolutions of the nonlinear water waves, simulate the nonlinear water waves such as the solitary wave and the swell wave with sharp peaks, and find out the pressure distribution of the water wave.
  • loading
  • [1]
    梅强中. 水波动力学[M]. 北京: 科学出版社, 1984.(MEI Qiangzhong. Water Wave Dynamics [M]. Beijing: Science Press, 1984.(in Chinese))
    [2]
    钟万勰, 姚征. 位移法浅水孤立波[J]. 大连理工大学学报, 2006,46(1): 151-156.(ZHONG Wanxie, YAO Zheng. Shallow water solitary waves based on displacement method[J]. Journal of Dalian University of Technology,2006,46(1): 151-156.(in Chinese))
    [3]
    钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2006.(ZHONG Wanxie. Symplectic Method in Applied Mechanics [M]. Beijing: High Education Press, 2006.(in Chinese))
    [4]
    钟万勰, 陈晓辉. 浅水波的位移法求解[J]. 水动力学研究与进展, 2006,21(4): 486-493.(ZHONG Wanxie, CHEN Xiaohui. Solving shallow water waves with the displacement method[J]. Journal of Hydrodynamics,2006,21(4): 486-493.(in Chinese))
    [5]
    钟万勰, 吴锋. 力-功-能-辛-离散: 祖冲之方法论[M]. 大连: 大连理工大学出版社, 2016. (ZHONG Wanxie, WU Feng. Force-Work-Energy-Symplecticity-Discretization: ZU Chongzhi’s Methodology [M]. Dalian: Dalian University of Technology Press, 2016.(in Chinese))
    [6]
    吴锋, 钟万勰. 浅水问题的约束Hamilton变分原理及祖冲之类保辛算法[J]. 应用数学和力学, 2016,37(1): 1-13.(WU Feng, ZHONG Wanxie. The constrained Hamilton variational principle for shallow water problems and the Zu-type symplectic algorithm[J]. Applied Mathematics and Mechanics,2016,37(1): 1-13.(in Chinese))
    [7]
    吴锋. 基于位移的水波数值模拟: 辛方法[M]. 大连: 大连理工大学, 2017. (WU Feng. Numerical Modeling of Water Waves Based on Displacement: Symplectic Method [M]. Dalian: Dalian University of Technology Press, 2017.(in Chinese))
    [8]
    钟万勰, 吴锋, 孙雁, 等. 保辛水波动力学[J]. 应用数学和力学, 2018,39(8): 855-874.(ZHONG Wanxie, WU Feng, SUN Yan, et al. Symplectic water wave dynamics[J]. Applied Mathematics and Mechanics,2018,39(8): 855-874.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1264) PDF downloads(548) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return