Citation: | WU Feng, ZHONG Wanxie. A Note on Symplectic Water Wave Dynamics[J]. Applied Mathematics and Mechanics, 2019, 40(1): 1-7. doi: 10.21656/1000-0887.390254 |
[1] |
梅强中. 水波动力学[M]. 北京: 科学出版社, 1984.(MEI Qiangzhong. Water Wave Dynamics [M]. Beijing: Science Press, 1984.(in Chinese))
|
[2] |
钟万勰, 姚征. 位移法浅水孤立波[J]. 大连理工大学学报, 2006,46(1): 151-156.(ZHONG Wanxie, YAO Zheng. Shallow water solitary waves based on displacement method[J]. Journal of Dalian University of Technology,2006,46(1): 151-156.(in Chinese))
|
[3] |
钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2006.(ZHONG Wanxie. Symplectic Method in Applied Mechanics [M]. Beijing: High Education Press, 2006.(in Chinese))
|
[4] |
钟万勰, 陈晓辉. 浅水波的位移法求解[J]. 水动力学研究与进展, 2006,21(4): 486-493.(ZHONG Wanxie, CHEN Xiaohui. Solving shallow water waves with the displacement method[J]. Journal of Hydrodynamics,2006,21(4): 486-493.(in Chinese))
|
[5] |
钟万勰, 吴锋. 力-功-能-辛-离散: 祖冲之方法论[M]. 大连: 大连理工大学出版社, 2016. (ZHONG Wanxie, WU Feng. Force-Work-Energy-Symplecticity-Discretization: ZU Chongzhi’s Methodology [M]. Dalian: Dalian University of Technology Press, 2016.(in Chinese))
|
[6] |
吴锋, 钟万勰. 浅水问题的约束Hamilton变分原理及祖冲之类保辛算法[J]. 应用数学和力学, 2016,37(1): 1-13.(WU Feng, ZHONG Wanxie. The constrained Hamilton variational principle for shallow water problems and the Zu-type symplectic algorithm[J]. Applied Mathematics and Mechanics,2016,37(1): 1-13.(in Chinese))
|
[7] |
吴锋. 基于位移的水波数值模拟: 辛方法[M]. 大连: 大连理工大学, 2017. (WU Feng. Numerical Modeling of Water Waves Based on Displacement: Symplectic Method [M]. Dalian: Dalian University of Technology Press, 2017.(in Chinese))
|
[8] |
钟万勰, 吴锋, 孙雁, 等. 保辛水波动力学[J]. 应用数学和力学, 2018,39(8): 855-874.(ZHONG Wanxie, WU Feng, SUN Yan, et al. Symplectic water wave dynamics[J]. Applied Mathematics and Mechanics,2018,39(8): 855-874.(in Chinese))
|