Citation: | MENG Dejia, DENG Dawen. Global Smooth Solutions With Exponential Growth to 2D Inviscid Boussinesq Equations Without Heat Conduction and 3D Axisymmetric Incompressible Euler Equations on Smooth Domains[J]. Applied Mathematics and Mechanics, 2019, 40(8): 910-916. doi: 10.21656/1000-0887.390245 |
[1] |
TEMAM R, MIRANVILLE A. Mathematical Modeling in Continuum Mechanics [M]. Cambridge: Cambridge University Press, 2001.
|
[2] |
MAJDA A. Introduction to PDEs and Waves for the Atmosphere and Ocean [M]. Providence: American Mathemaical Society, 2003.
|
[3] |
PEDLOSKY J. Geophysical Fluid Dynamics [M]. 2nd ed. New York: Springer-Verlag, 2013.
|
[4] |
MAJDA A J, BERTOZZI A L. Vorticity and Incompressible Flow [M]. Cambridge: Cambridge University Press, 2002.
|
[5] |
YUDOVICH V I. Eleven great problems of mathematical hydrodynamic[J]. Moscow Mathematical Journal,2003,3(2): 711-737.
|
[6] |
KISELEV A, TAN C. Finite time blow up in the hyperbolic Boussinesq system[J]. Advances in Mathematics,2018, 325: 34-55.
|
[7] |
BEALE J T, KATO T, MAJDA A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations[J]. Communications in Mathematical Physics,1984,94(1): 61-66.
|
[8] |
KATO T. On classical solutions of the two-dimensional nonstationary Euler equation[J]. Archive for Rational Mechanics and Analysis,1967,25(3): 188-200.
|
[9] |
MARCHIORO C, PULVIRENTI M. Mathematical Theory of Incompressible Nonviscous Fluids [M]. New York: Springer-Verlag, 1994.
|
[10] |
YUDOVICH V I. The flow of a perfect, incompressible liquid through a given region[J]. Soviet Physics Doklady,1963,7: 789-791.
|
[11] |
KISELEV A, SVERAK V. Small scale creation for solutions of the incompressible two-dimensional Euler equation[J]. Annals of Mathematics,2014,180(3): 1205-1220.
|
[12] |
ZLATOS A. Exponential growth of the vorticity gradient for the Euler equation on the torus[J]. Advances in Mathematics,2015,268: 396-403.
|
[13] |
KISELEV A, ZLATOS A. Blow up for the 2D Euler equation on some bounded domains[J]. Journal of Differential Equations,2015,259(7): 3490-3494.
|
[14] |
CHAE D, CONSTANTIN P, WU J. An incompressible 2D didactic model with singularity and explicit solutions of the 2D Boussinesq equations[J]. Journal of Mathematical Fluid Mechanics,2014,16(3): 473-480.
|