CHEN Shenshen, ZENG Jiawei. A Reproducing Kernel Interpolation Method for Axisymmetric Elastodynamic Problems[J]. Applied Mathematics and Mechanics, 2019, 40(8): 938-944. doi: 10.21656/1000-0887.390242
Citation: CHEN Shenshen, ZENG Jiawei. A Reproducing Kernel Interpolation Method for Axisymmetric Elastodynamic Problems[J]. Applied Mathematics and Mechanics, 2019, 40(8): 938-944. doi: 10.21656/1000-0887.390242

A Reproducing Kernel Interpolation Method for Axisymmetric Elastodynamic Problems

doi: 10.21656/1000-0887.390242
Funds:  The National Natural Science Foundation of China(11462006;11772129)
  • Received Date: 2018-09-13
  • Rev Recd Date: 2018-11-15
  • Publish Date: 2019-08-01
  • The reproducing kernel interpolation method (RKIM) is a novel type of meshless method emerging in recent years. Because the shape functions of the RKIM have point interpolation property and high-order smoothness, the essential boundary conditions can be imposed directly and high computational accuracy is ensured as well. In order to solve the elastodynamic problems for 3D axisymmetric solids more effectively, a novel numerical method based on the RKIM was presented and discussed. Due to axial symmetry of geometry and boundary conditions, only a set of discrete nodes on a cross section are required in the computation and therefore the preprocessing of this method is very simple. The Newmark-β algorithm was employed for time integration. Numerical examples show that, the proposed method for solving axisymmetric elastodynamic problems possesses the advantages of meshless methods and high accuracy.
  • loading
  • [1]
    LI X L, LI S L. A meshless projection iterative method for nonlinear Signorini problems using the moving Kriging interpolation[J]. Engineering Analysis With Boundary Elements,2019,98: 243-252.
    [2]
    杨建军, 郑健龙. 无网格局部强弱法求解不规则域问题[J]. 力学学报, 2017,49(3): 659-666.(YANG Jianjun, ZHENG Jianlong. Meshless local strong-weak (MLSW) method for irregular domain problems[J]. Chinese Journal of Theoretical and Applied Mechanics,2017,49(3): 659-666.(in Chinese))
    [3]
    肖毅华, 张浩锋, 平学成. 无网格对称粒子法中两类热边界条件的处理[J]. 华东交通大学学报, 2014,31(4): 65-70.(XIAO Yihua, ZHANG Haofeng, PING Xuecheng. Treatment of two kinds of thermal boundary conditions in meshless symmetric particle method[J]. Journal of East China Jiaotong University,2014,31(4): 65-70.(in Chinese))
    [4]
    FU Z J, XI Q, CHEN W, et al. A boundary-type meshless solver for transient heat conduction analysis of slender functionally graded materials with exponential variations[J]. Computers and Mathematics With Applications,2018,76(4): 760-773.
    [5]
    LI M, DOU F F, KORAKIANITIS T, et al. Boundary node Petrov-Galerkin method in solid structures[J]. Computational and Applied Mathematics,2018,37(1): 135-159.
    [6]
    王峰, 周宜红, 郑保敬, 等. 基于滑动Kriging插值的MLPG法求解结构非耦合热应力问题[J]. 应用数学和力学, 2016,37(11): 1217-1227.(WANG Feng, ZHOU Yihong, ZHENG Baojing, et al. A meshless local Petrov-Galerkin method based on the moving Kriging interpolation for structural uncoupled thermal stress analysis[J]. Applied Mathematics and Mechanics,2016,37(11): 1217-1227.(in Chinese))
    [7]
    孙新志, 李小林. 复变量移动最小二乘近似在Sobolev空间中的误差估计[J]. 应用数学和力学, 2016,37(4): 416-425.(SUN Xinzhi, LI Xiaolin. Error estimates for the complex variable moving least square approximation in Sobolev spaces[J]. Applied Mathematics and Mechanics,2016,37(4): 416-425.(in Chinese))
    [8]
    LIU W K, JUN S, ZHANG Y F. Reproducing kernel particle methods[J]. International Journal for Numerical Methods in Engineering,1995,20(8/9): 1081-1106.
    [9]
    GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and applications to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society,1977,181(3): 275-389.
    [10]
    CHEN J S, HAN W, YOU Y, et al. A reproducing kernel method with nodal interpolation property[J]. International Journal for Numerical Methods in Engineering,2003,56(7): 935-960.
    [11]
    李中华, 秦义校, 崔小朝. 弹性力学的插值型重构核粒子法[J]. 物理学报, 2012,61(8): 25-31.(LI Zhonghua, QIN Yixiao, CUI Xiaochao. Interpolating reproducing kernel particle method for elastic mechanics[J]. Acta Physica Sinica,2012,61(8): 25-31.(in Chinese))
    [12]
    韩治, 杨海天, 王斌. 无网格伽辽金法求解轴对称问题[J]. 工程力学, 2005,22(5): 64-68.(HAN Zhi, YANG Haitian, WANG Bin. Solving axisymmetric problems via EFGM[J]. Engineering Mechanics, 2005,22(5): 64-68.(in Chinese))
    [13]
    陈建桥, 梁元博, 丁亮. 无网格局部Petrov-Galerkin法求解轴对称问题[J]. 华中科技大学学报(城市科学版), 2007,24(4): 9-12.(CHEN Jianqiao, LIANG Yuanbo, DING Liang. Numerical analysis of axisymmetric problems by MLPG[J]. Journal of Huazhong University of Science and Technology(Urban Science Edition),2007,24(4): 9-12.(in Chinese))
    [14]
    陈莘莘, 李庆华, 刘永胜. 轴对称动力学问题的无网格自然邻接点Petrov-Galerkin法[J]. 振动与冲击, 2015,34(3): 61-65.(CHEN Shenshen, LI Qinghua, LIU Yongsheng. Meshless natural neighbour Petrov-Galerkin method for axisymmetric dynamic problems[J]. Journal of Vibration and Shock,2015,34(3): 61-65.(in Chinese))
    [15]
    姜清辉, 周创兵, 漆祖芳. 基于Newmark积分方案的DDA方法[J]. 岩石力学与工程学报, 2009,28(1): 2778-2783.(JIANG Qinghui, ZHOU Chuangbing, QI Zufang. Discontinuous deformation analysis method based on Newmark integration algorithm[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(1): 2778-2783.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1158) PDF downloads(413) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return