ZHANG Yingchun, LI Yin, XIAO Manyu, XIE Gongnan. Some Preconditioning Iterative Algorithms for Non-Hermitian Linear Equations[J]. Applied Mathematics and Mechanics, 2019, 40(3): 237-249. doi: 10.21656/1000-0887.390222
Citation: ZHANG Yingchun, LI Yin, XIAO Manyu, XIE Gongnan. Some Preconditioning Iterative Algorithms for Non-Hermitian Linear Equations[J]. Applied Mathematics and Mechanics, 2019, 40(3): 237-249. doi: 10.21656/1000-0887.390222

Some Preconditioning Iterative Algorithms for Non-Hermitian Linear Equations

doi: 10.21656/1000-0887.390222
Funds:  The National Natural Science Foundation of China(51676163)
  • Received Date: 2018-08-23
  • Rev Recd Date: 2018-09-02
  • Publish Date: 2019-03-01
  • Non-Hermitian linear equations have extensive application in scientific and engineering calculations and are expected to be solved with high efficiency. To accelerate the convergence rate of original algorithms, a preconditioning technique was developed and applied to some iterative methods chosen to solve the nonHermitian linear equations and complex linear systems with multiple righthand sides. Several numerical experiments show that the preconditioned iterative methods are superior to the original methods in terms of both the convergence rate and the number of iterations. In addition, the preconditioned generalized conjugate A-orthogonal residual squared method (GCORS2) has better convergent behavior and stability than other preconditioned methods.
  • loading
  • [1]
    BAZN F S V, KLEEFELD A, LEEM K H, et al. Sampling method based projection approach for the reconstruction of 3D acoustically penetrable scatterers[J]. Linear Algebra and Its Applications,2016,495(15): 289-323.
    [2]
    SADD Y. A flexible inner-outer preconditioned GMRES algorithm[J]. SIAM Journal on Scientific Computing,1993,14(2): 461-469.
    [3]
    BAI A, DAY D, DONGARRA J, et al. A test matrix collection for non-Hermitian eigenvalue problems: CS-97-355[R]. Knoxville, TN: Department of Computer Science, University of Tennessee, 1997.
    [4]
    BAYLISS A, GLODSTEIN C I, TURKEL E. An iteration method for the Helmholtz equation[J]. Journal of Computational Physics,1983,49(3): 443-457.
    [5]
    HU Q Y, YUAN L. A plane-wave least-squares method for time-harmonic Maxwell’s equations in absorbing media[J]. SIAM Journal on Scientific Computing,2014,36(4): 1937-1959.
    [6]
    HUTTUNEN T, MALINEN M, MONK P. Solving Maxwell’s equations using the ultra weak variational formulation[J]. Journal of Computational Physics,2007,223(2): 731-758.
    [7]
    SAAD Y, SCHULTZ M H. A generalized minimum residual algorithm for solving nonsymmetirc linear systems[J]. SIAM Journal on Scientific and Statistical Computing,1986,7(3): 856-869.
    [8]
    DU K. GMRES with adaptively deflated restarting and its performance on an electromagnetic cavity problem[J]. Applied Numerical Mathematics,2011,61(9): 977-988.
    [9]
    VAN DERVORST H A. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems[J].SIAM Journal on Scientific and Statistical Computing,1992,13(2): 631-644.
    [10]
    DEHGHAN M, MOHAMMADI-ARANI R. Generalized product-type methods based on bi-conjugate gradient (GPBiCG) for solving shifted linear systems[J]. Computational and Applied Mathematics,2017,36(4): 1591-1606.
    [11]
    ZHAO L, HUANG T Z, JING Y F, et al. A generalized product-type BiCOR method and its application in signal deconvolution[J]. Computers and Mathematics With Applications,2013,66(8): 1372-1388.
    [12]
    GU X M, HUANG T Z, CARPENTIERI B, et al. A hybridized iterative algorithm of the BiCORSTAB and GPBiCOR methods for solving non-Hermitian linear systems[J].Computers and Mathematics With Applications,2015,70(12): 3019-3031.
    [13]
    ZHANG J H, DAI H. Generalized conjugate A-orthogonal residual squared method for complex non-Hermitian linear systems[J]. Journal of Computational Mathematics,2014,32(3): 248-265.
    [14]
    张建华, 戴华. 求解具有多个右端项线性方程组的总体CGS算法[J]. 高等学校计算数学学报, 2008,30(4): 390-399.(ZHANG Jianhua, DAI Hua. Global CGS algorithm for linear systems with multiple right-hand sides[J]. Numerical Mathematics a Journal of Chinese Universities,2008,30(4): 390-399.(in Chinese))
    [15]
    ZHANG J H, DAI H. Global GPBiCG method for complex non-Hermitian linear systems with multiple right-hand sides[J]. Computational and Applied Mathematics,2016,35(1): 171-185.
    [16]
    张建华. 非Hermitian线性方程组的若干迭代方法及其预处理[D]. 博士学位论文. 南京: 南京航空航天大学, 2016.(ZHANG Jianhua. Some iterative methods and their preconditioned variants for non-Hermitian linear systems[D]. PhD Thesis. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.(in Chinese))
    [17]
    富明慧, 李勇息. 求解病态线性方程组的预处理精细积分法[J]. 应用数学和力学, 2018,39(4): 462-469.(FU Minghui, LI Yongxi. A preconditioned precise integration method for solving ill-conditioned linear equations[J]. Applied Mathematics and Mechanics,2018,39(4): 462-469.(in Chinese))
    [18]
    DAVIS T A, HU Y F. The university of Florida sparse matrix collection[J].ACM Transactions on Mathematical Software,2011,38(1): 1-25.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1394) PDF downloads(531) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return