Citation: | ZHOU Jingrun, FU Jingli. Lie Symmetry of Constrained Hamiltonian Systems and Its Application in Field Theory[J]. Applied Mathematics and Mechanics, 2019, 40(7): 810-822. doi: 10.21656/1000-0887.390218 |
[1] |
XUE Y, ZHANG Y. Lie symmetries of constrained Hamiltonian systems with constraints of the second kind[J]. Acta Physica Sinica,2001,50(5): 816-819.
|
[2] |
LUO S K. Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian canonical equations for a singular system[J]. Acta Physica Sinica,2004,53(1): 5-10.
|
[3] |
张素英, 邓子辰. 用投影方法求耗散广义Hamilton约束系统的李群积分[J]. 应用数学和力学, 2004,〖STHZ〗 25(4): 385-390.(ZHANG Suying, DENG Zichen. Lie group integration for constrained generalized Hamiltonian system with dissipation by projection method[J]. Applied Mathematics and Mechanics,2004,〖STHZ〗 25(4): 385-390.(in Chinese))
|
[4] |
DU M L, DELOS J B. Effect of closed classical orbits on quantum spectra: ionization of atoms in a magnetic field[J]. Physical Review Letters,1987,58(17): 1731-1733.
|
[5] |
王永龙, 赵德玉. 约束Hamilton系统对称性及应用[M]. 山东: 山东人民出版社, 2012.(WANG Yonglong, ZHAO Deyu. The Symmetry of Constrained Hamilton System and Its Application [M]. Shandong: Shandong People’s Publishing House, 2012.(in Chinese))
|
[6] |
TINKHAM M. Group Theory and Quantum Mechanics [M]. New York: McGraw-Hill, 1964.
|
[7] |
BISWAS T. Symmetry breaking of gauge theories via internal space dynamics[J]. Journal of High Energy Physics,2002,2(1): 135-146.
|
[8] |
LUTZKY M. Dynamical symmetries and conserved quantities[J]. Journal of Physics A: Mathematical and General,1979,12(7): 973-981.
|
[9] |
韩广才, 张耀良. 一类广义力学系统的能量方程[J]. 哈尔滨工程大学学报, 2001,22(4): 69-71.(HAN Guangcai, ZHANG Yaoliang. Energy equation of generalized mechanical system[J]. Journal of Harbin Engineering University,2001,22(4): 69-71.(in Chinese))
|
[10] |
LIU R. Noether’s theorem and its inverse of nonholonomic nonconservative dynamical systems[J]. Science in China(Series A),1991,34(4): 37-47.
|
[11] |
BLUMAN G W, KUMEI S. Symmetries and Differential Equations [M]. Berlin: Springer, 1989.
|
[12] |
MACCALLUM M. Differential Equations: Their Solution Using Symmetries [M]. Cambridge: Cambridge University Press, 1989.
|
[13] |
OVSIANNIKOV L V. Group Analysis of Differential Equations [M]. New York: Academic Press, 1982.
|
[14] |
GORRINGE V M, LEACH P G L. Lie point symmetries for systems of second order linear ordinary differential equations[J]. Quaestiones Mathematicae,1988,〖STHZ〗 11(1): 95-117.
|
[15] |
CHEH J, OLVER P J, POHJANPELTO J. Algorithms for differential invariants of symmetry groups of differential equations[J]. Foundations of Computational Mathematics,2008,8: 501-532.
|
[16] |
OLVER P J, POHJANPELTO J. Moving frames for Lie pseudo-groups[J]. Canadian Journal of Mathematics,2008,60: 1336-1386.
|
[17] |
MEI J Q, WANG H Y. The generating set of the differential invariant algebra and Maurer-Cartan equations of a (2+1)-dimensional Burgers equation[J]. Journal of Systems Science and Complexity,2013,26(2): 281-290.
|
[18] |
BEFFA G. Poisson geometry of differential invariants of curves in some nonsemisimple homogeneous spaces[J]. Proceedings of the American Mathematical Society,2006,134(3): 779-791.
|
[19] |
OLVER P J, POHJANPELTO J. Differential invariant algebras of Lie pseudo-groups[J]. Advances in Mathematics,2009,222(5): 1746-1792.
|
[20] |
LISLE G I, REID G J. Symmetry classification using noncommutative invariant differential operators[J]. Foundations of Computational Mathematics,2006,6(3): 353-386.
|
[21] |
FU J L, CHEN B Y, CHEN L Q. Noether symmetries of discrete nonholonomic dynamical systems[J]. Physics Letters A,2009,373(4): 409-412.
|
[22] |
傅景礼, 陈立群, 陈本永. 非规范格子离散非保守系统的Noether理论[J]. 中国科学(G辑), 2009,39(9): 1320-1329.(FU Jingli, CHEN Liqun, CHEN Benyong. Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices[J]. Scientia Sinica(Series G),2009,39(9): 1320-1329.(in Chinese))
|
[23] |
傅景礼, 陈立群, 陈本永. 非规范格子离散机电耦合动力系统的Noether理论[J]. 中国科学(G辑), 2010,40(2): 133-145.(FU Jingli, CHEN Liqun, CHEN Benyong. Noether-type theorem for discrete electromechanical coupling systems with nonregular lattices[J]. Scientia Sinica(Series G), 2010,40(2): 133-145.(in Chinese))
|
[24] |
赵跃宇. 非保守力学系统的Lie对称性和守恒量[J]. 力学学报, 1994,26(3): 380-384.(ZHAO Yueyu. Lie symmetries and conserved quantities of non-conservative mechanical system[J]. Acta Mechanica Sinica,1994,26(3): 380-384.(in Chinese))
|
[25] |
梅凤翔. 李群和李代数对约束力学系统的应用[M]. 北京: 科学出版社, 1999.(MEI Fengxiang. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems [M]. Beijing: Science Press, 1999.(in Chinese))
|
[26] |
MEI F X. Lie symmetries and conserved quantities of constrained mechanical systems[J]. Acta Mechanica,2000,141: 135-148.
|
[27] |
ZHANG H B. Lie symmetries and conserved quantities of non-holonomic mechanical systems with unilateral Vacco constraints[J]. Chinese Physics,2002,11(1): 1-4.
|
[28] |
周景润, 傅景礼. 约束Hamilton系统的积分因子及其守恒量[J]. 力学季刊, 2018,39(3): 554-561.(ZHOU Jingrun, FU Jingli. The integrating factor and conservation quantity for constrained Hamilton system[J]. Chinese Quarterly of Mechanics,2018,39(3): 554-561.(in Chinese))
|
[29] |
OLVER P J. Applications of Lie Group to Differential Equations [M]. Berlin: Springer, 2000.
|
[30] |
OLVER P J. Equivalence, Invariants and Symmetry [M]. Cambridge: Cambridge University Press, 1995.
|
[31] |
梅凤翔, 吴润衡, 张永发. 非Чет〖KG-*4〗аев型非完整系统的Lie对称性与守恒量[J]. 力学学报, 1988,30(4): 468-474.(MEI Fengxiang, WU Runheng, ZHANG Yongfa. Lie symmetries and conserved quantities of nonholonomic systems of non-Chetaev’s type[J]. Acta Mechanica Sinica,1988,30(4): 468-474.(in Chinese))
|
[32] |
ZHAO Y Y, MEI F X. On symmetry and invariant of dynamical systems[J]. Advances in Mechanics,1993,23(3): 360-372.
|
[33] |
梅凤翔. 非完整系统力学基础[M]. 北京: 北京工业学院出版社, 1985.(MEI Fengxiang. Nonholonomic Mechanics Foundation [M]. Beijing: Beijing Institute of Technology Press, 1985.(in Chinese))
|
[34] |
XIANG Pei, GUO Yongxin, FU Jingli. Time and space fractional Schrdinger equation with fractional factor[J]. Communications in Theoretical Physics,2019,71(1): 16-26.
|
[35] |
梅凤翔. 约束力学系统的对称性与守恒量[M]. 北京: 北京理工大学出版社, 2004.(MEI Fengxiang. Symmetry and Conserved Quantity of Constrained Mechanical System [M]. Beijing: Beijing Institute of Technology Press, 2004.(in Chinese))
|
[36] |
CHEN X W, LIU C, MEI F X, et al. Conformal invariance and Hojman conserved quantities of first order Lagrange systems[J]. Chinese Physics B,2008,50(9): 3180-3184.
|
[37] |
FU J L, CHEN B Y, FU H, et al. Velocity-dependent symmetries and non-Noether conserved quantities of electromechanical systems[J]. Science China: Physics, Mechanics and Astronomy,2011,54(2): 288-295.
|
[38] |
FU J L, LI X W, LI C R, et al. Symmetries and exact solutions of discrete nonconservative systems[J]. Science China: Physics, Mechanics and Astronomy,2010,53(9): 1699-1706.
|
[39] |
FENG K, QIN M Z. Symplectic Geometric Algorithms for Hamiltonian System [M]. New York: Springer, 2009.
|
[40] |
刘荣万, 傅景礼. 非完整非保守力学系统在相空间的Lie对称性与守恒量[J]. 应用数学和力学, 1999,20(6): 597-601.(LIU Rongwan, FU Jingli. Lie symmetries and conserved quantities of nonconservative nonholonomic system in phase space[J]. Applied Mathematics and Mechanics,1999,20(6): 597-601.(in Chinese))
|
[41] |
乔永芬, 张耀良, 赵淑红. 完整非保守系统Raitzin正则运动方程的积分因子和守恒定理[J]. 物理学报, 2002,51(8): 1661-1665.(QIAO Yongfen, ZHANG Yaoliang, ZHAO Shuhong. Integrating factors and conservation laws for the Raitzins canonical equations of motion of non-conservative dynamical systems[J]. Acta Physica Sinca,2002,51(8): 1661-1665.(in Chinese))
|
[42] |
傅景礼, 刘荣万. 准坐标下非完整力学系统的Lie对称性和守恒量[J]. 数学物理学报, 2000,20(1): 63-69.(FU Jingli, LIU Rongwan. Lie symmetries and conserver quantities of nonholonomic mechanical systems in terms of quasi-coordinates[J]. Acta Mathematica Scientia, 2000,20(1): 63-69.(in Chinese))
|
[43] |
郑明亮. 机械多体系统动力学非线性最优控制问题的Noether理论[J]. 应用数学和力学, 2018,〖STHZ〗 39(7): 776-784.(ZHENG Mingliang. The Noether theorem for nonlinear optimal control problems of mechanical multibody system dynamics[J]. Applied Mathematics and Mechanics,2018,〖STHZ〗 39(7): 776-784.(in Chinese))
|
[44] |
崔新斌, 傅景礼. 汽车电磁悬架系统的Noether对称性及其应用[J]. 应用数学和力学, 2017,38(12): 1331-1341.(CUI Xinbin, FU Jingli. Noether symmetry of automotive electromagnetic suspension systems and its application[J]. Applied Mathematics and Mechanics,2017,38(12): 1331-1341.(in Chinese))
|
[45] |
李子平. 约束哈密顿系统及其对称性质[M]. 北京: 北京工业大学出版社, 1999.(LI Ziping. Constrained Hamiltonian Systems and Their Symmetric Properties [M]. Beijing: Beijing University of Technology Press, 1999.(in Chinese))
|
[46] |
周景润, 傅景礼. 约束Hamilton系统的积分因子和守恒量及其在场论中的应用[J]. 数学物理学报, 2019,39(1): 38-48.(ZHOU Jingrun, FU Jingli. Integrating factors and conserved quantities for constrained Hamilton systems and its applications in field theory[J]. Acta Mathematica Scientia,2019,39(1): 38-48.(in Chinese))
|
[47] |
LI Z P. Symmetry in field theory for singular Lagrangian with derivatives of higher order[J]. Acta Mathematica Scientia,1994,14(S1): 30-39.
|
[48] |
LI Z P. The symmetry transformation of the constrained system with high-order derivatives[J]. Acta Mathematica Scientia,1985,5(4): 379-388.
|
[49] |
ZHANG R L, LIU J D, TANG Y F, et al. Canonicalization and symplectic simulation of gyrocenter dynamics in time-independent magnetic fields[J]. Physics of Plasmas,2014,21(3): 2445-2458
|
[50] |
TANG Y F. Formal energy of a symplectic scheme for Hamiltonian systems and its applications[J]. Computers and Mathematics With Applications,1994,27(7): 31-39.
|
[51] |
ZHNAG R L,TANG Y F, ZHU B B, et al. Convergence analysis of the formal energies of symplectic methods for Hamiltonian systems[J]. Science China Mathematics,2016,59(2): 1-18.
|