DAI Meng, YIN Xiaoyan. Unconditionally Optimal Error Estimates of the Semi-Implicit BDF2-FEM for Cubic Schrödinger Equations[J]. Applied Mathematics and Mechanics, 2019, 40(6): 663-681. doi: 10.21656/1000-0887.390209
Citation: DAI Meng, YIN Xiaoyan. Unconditionally Optimal Error Estimates of the Semi-Implicit BDF2-FEM for Cubic Schrödinger Equations[J]. Applied Mathematics and Mechanics, 2019, 40(6): 663-681. doi: 10.21656/1000-0887.390209

Unconditionally Optimal Error Estimates of the Semi-Implicit BDF2-FEM for Cubic Schrödinger Equations

doi: 10.21656/1000-0887.390209
Funds:  The National Natural Science Foundation of China(General Program)(11771259)
  • Received Date: 2018-07-31
  • Rev Recd Date: 2019-04-13
  • Publish Date: 2019-06-01
  • The optimal error estimates of the semi-implicit BDF2-FEM were studied for cubic Schrödinger equations. First, an error estimate was divided into 2 parts: the temporal-discretization and the spatial-discretization. Through introduction of a temporal-discretization equation, the uniform boundedness of the solution and the temporal error estimate were obtained. The unconditionally optimal error estimates of the 2nd-order backward difference (BDF2-FEM) semi-implicit scheme for cubic Schrdinger equations were given. Finally, numerical examples verify the theoretical analysis.
  • loading
  • [1]
    DELFOUR M, FORTIN M, PAYRE G. Finite-difference solutions of a non-linear Schrdinger equation[J]. Journal of Computational Physics,1981,44(2): 277-288.
    [2]
    EBAID A, KHALED S M. New types of exact solutions for nonlinear Schrdinger equation with cubic nonlinearity[J]. Journal of Computational and Applied Mathematics,2011,235(8): 1984-1992.
    [3]
    LI B Y, SUN W W. Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations[J]. International Journal of Numerical Analysis and Modeling,2013,10(3): 622-633.
    [4]
    LI B Y, SUN W W. Unconditionally optimal error estimates of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations[J]. SIAM Journal on Numerical Analysis,2012,52(2): 933-954.
    [5]
    LAMBERT J D. Numerical Methods for Ordinary Differential Systems: the Initial Value Problem [J]. New York: John Wiley & Sons Inc, 1991.
    [6]
    BAKER G, DOUGALIS V, KARAKASHIAN O. On a higher accurate fully discrete Galerkin approximation to the Navier-Stokes equations[J]. Mathematics of Computation,1982,39(160): 339-375.
    [7]
    CAI W, LI J, CHEN Z. Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrdinger equation[J]. Advances in Computational Mathematics,2016,42(6): 1311-1330.
    [8]
    CAI W, LI J, CHEN Z. Unconditional optimal error estimates for BDF2-FEM for a nonlinear Schrdinger equation[J]. Journal of Computational and Applied Mathematics,2018,331: 23-41.
    [9]
    DUPONT T. Three-level Galerkin methods for parabolic equations[J]. SIAM Journal on Numerical Analysis,1974,11(2): 392-410.
    [10]
    姜礼尚, 庞之垣. 有限元方法及其理论[M]. 北京: 人民教育出版社, 1979.(JIANG Lishang, PANG Zhiyuan. Finite Element Method and Its Theory [M]. Beijing: People’s Education Press, 1979.(in Chinese))
    [11]
    BREZZI F, RAPPAZ J, RAVIART P A. Finite Dimensional Approximation of Nonlinear Problems [M]. New York: Springer-Verlag, 1980.
    [12]
    AKRIVIS G, LARSSON S. Linearly implicit finite element methods for the time-dependent Joule heating problem[J]. Bit Numerical Mathematics,2005,45(3): 429-442.
    [13]
    JENSEN M, MALQVIST A. Finite element convergence for the Joule heating problem with mixed boundary conditions[J]. Bit Numerical Mathematics,2013, 53(2): 475-496.
    [14]
    BULUT H, PANDIR Y, DEMIRAY S T. Exact solutions of nonlinear Schrdinger equation with dual power-law nonlinearity by extended trial equation method[J]. Waves Random Complex Media,2014,24(4): 439-451.
    [15]
    HEYWOOD J G, RANNACHER R. Finite element approximation of the nonstationary Navier-Stokes problem IV: error analysis for second-order time discretization[J]. SIAM Journal on Numerical Analysis,1984,27(2): 353-384.
    [16]
    FEIT M D, FLECK J A, STEIGER A. Solution of the Schrdinger equation by a spectral method II: vibrational energy levels of triatomic molecules[J]. Journal of Computational Physics,1983,78(1): 301-308.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1366) PDF downloads(535) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return