Citation: | ZHANG Qiu, CHEN Guangsheng. Existence of Critical Traveling Waves for Nonlocal Dispersal SIR Models With Delay and Nonlinear Incidence[J]. Applied Mathematics and Mechanics, 2019, 40(7): 713-727. doi: 10.21656/1000-0887.390208 |
[1] |
VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences,2002,180(1/2): 29-48.
|
[2] |
YANG F Y, LI Y, LI W T, et al. Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model[J]. Discrete and Continuous Dynamical Systems(Series B),2013,18(7): 1969-1993.
|
[3] |
WANG H Y. Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems[J]. Journal of Nonlinear Science,2011,21(5): 747-783.
|
[4] |
WANG H Y, WANG X S. Traveling wave phenomena in a Kermack-Mckendrick SIR model[J]. Journal of Dynamics & Differential Equations,2016,28(1):143-166.
|
[5] |
WANG J B, LI W T, YANG F Y. Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission[J]. Communications in Nonlinear Science & Numerical Simulations,2015,27(1/3):136-152.
|
[6] |
FU S C, GUO J S, WU C C. Traveling wave solutions for a discrete diffusive epidemic model[J]. Journal of Nonlinear and Convex Analysis,2016,17(9): 1739-1751.
|
[7] |
ZHANG T R, WANG W D, WANG K F. Minimal wave speed for a class of non-cooperative diffusion-reaction system[J]. Journal of Differential Equations,2016,260(3): 2763-2791.
|
[8] |
WANG X S, WANG H Y, WU J H. Traveling waves of diffusive predator-prey systems: disease outbreak propagation[J]. Discrete & Continuous Dynamical Systems,2017,32(9): 3303-3324.
|
[9] |
LI Y, LI W T, YANG F Y. Traveling waves for a nonlocal dispersal SIR model with delay and external supplies[J]. Applied Mathematics & Computation,2014,247: 723-740.
|
[10] |
LI Y, LI W T, LIN G. Traveling waves of a delayed diffusive SIR epidemic model[J]. Communications on Pure & Applied Analysis,2015,14(3): 1001-1022.
|
[11] |
WANG Z C, WU J H. Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission[J]. Proceedings Mathematical Physical & Engineering Sciences,2010,466(2113): 237-261.
|
[12] |
LI W T, YANG F Y, MA C, et al. Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold[J]. Discrete and Continuous Dynamical Systems(Series B),2014,19(2): 467-484.
|
[13] |
BAI Z G, WU S L. Traveling waves in a delayed SIR epidemic model with nonlinear incidence[J]. Applied Mathematics and Computation,2015,263: 221-232.
|
[14] |
邹霞, 吴事良. 一类具有非线性发生率与时滞的非局部扩散SIR模型的行波解[J]. 数学物理学报, 2018,38(3): 496-513.(ZOU Xia, WU Shiliang. Traveling waves in a nonlocal dispersal SIR epidemic model with delay and nonlinear incidence[J]. Acta Mathematica Scientia,2018,38(3): 496-513.(in Chinese))
|
[15] |
ZHANG S P, YANG Y R, ZHOU Y H. Traveling waves in a delayed SIR model with nonlocal dispersal and nonlinear incidence[J]. Journal of Mathematical Physics,2018,59(1): 011513. DOI: 10.1063/1.5021761.
|
[16] |
CHEN Y Y, GUO J S, HAMEL F. Traveling waves for a lattice dynamical system arising in a diffusive endemic model[J]. Nonlinearity,2016,30(6). DOI: 10.1088/1361-6544/aa6b0a.
|
[17] |
YANG F Y, LI W T. Traveling waves in a nonlocal dispersal SIR model with critical wave speed[J]. Journal of Mathematical Analysis & Applications,2017,458(2): 1131-1146.
|
[18] |
WU C C. Existence of traveling waves with the critical speed for a discrete diffusive epidemic model[J]. Journal of Differential Equations,2017,262(1): 272-282.
|
[19] |
ZHANG G B, LI W T, WANG Z C. Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity[J]. Journal of Differential Equations,2012,252(9): 5096-5124.
|
[20] |
CAPASSO V, SERIO G. A generalization of the Kermack-McKendrick deterministic epidemic model[J]. Mathematical Biosciences,1978,42(1/2): 43-61.
|