Citation: | ZHANG Jun, LI Lizhou, YUAN Meini. Optimization of RBF Parameterized Airfoils With the Aerodynamic ROM[J]. Applied Mathematics and Mechanics, 2019, 40(3): 250-258. doi: 10.21656/1000-0887.390187 |
[1] |
ZHANG M C, GOU W X, LI L, et al. Multidisciplinary design and multi-objective optimization on guide fins of twin-web disk using Kriging surrogate model[J]. Structural & Multidisciplinary Optimization,2017,55(1): 361-373.
|
[2] |
WEI P F, WANG Y Y, TANG C H. Time-variant global reliability sensitivity analysis of structures with both input random variables and stochastic processes[J]. Structural and Multidisciplinary Optimization,2017,55(5): 1883-1898.
|
[3] |
GHOREYSHI M, JIRASEK A, CUMMINGS M R. Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics[J]. Progress in Aerospace Sciences,2014,71: 167-217.
|
[4] |
SILVA W A. Reduced-order models based on linear and nonlinear aerodynamic impulse responses[J]. AIAA Journal,1999,233: 1-11.
|
[5] |
SU D, ZHANG W W, MA M S, et al. An efficient coupled method of cascade flutter investigation based on reduced order model[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.San Jose City, USA, 2013.
|
[6] |
SU D, ZHANG W W, YE Z Y. A reduced order model for uncoupled and coupled cascade flutter analysis[J]. Journal of Fluids and Structures,2016,61: 410-430.
|
[7] |
XU K, ZHAO L, GE Y J. Reduced-order modeling and calculation of vortex-induced vibration for large-span bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics,2017,167: 228-241.
|
[8] |
WONG A, NITZSCHE F, KHALID M. Formulation of reduced-order models for blade-vortex interaction using modifiedvolterra kernels[C]// The 〖STBX〗30th European Rotorcraft Forum(ERF).Marseilles, France, 2004.
|
[9] |
HE L. Fourier methods forturbomachinery applications[J]. Progress in Aerospace Sciences,2010,46: 329-341.
|
[10] |
YAO W G, JAIMAN R K. A harmonic balance technique for the reduced-order computation of vortex-induced vibration[J]. Journal of Fluids and Structures,2016,65: 313-332.
|
[11] |
罗骁, 张新燕, 张珺, 等. 基于谐波平衡法的尾流激励的叶片振动降阶模型方法[J]. 应用数学和力学, 2018,39(8): 892-899.(LUO Xiao, ZHANG Xinyan, ZHANG Jun, et al. A reduced-order model method for blade vibration due to upstream wake based on the harmonic balance method[J]. Applied Mathematics and Mechanics,2018,39(8): 892-899.(in Chinese))
|
[12] |
BOURGUET R, BRAZA M, DERVIEUX A. Reduced-order modeling of transonic flows around an airfoil submitted to small deformations[J]. Journal of Computational Physics,2011,230(1): 159-184.
|
[13] |
LI X T, LIU Y L, KOU J Q, et al. Reduced-order thrust modeling for an efficiently flapping airfoil using system identification method[J]. Journal of Fluids and Structures,2017,69: 137-153.
|
[14] |
KOU J Q, ZHANG W W. Multi-kernel neural networks for nonlinear unsteady aerodynamic reduced-order modeling[J]. Aerospace Science and Technology,2017,67: 309-326.
|
[15] |
王梓伊, 张伟伟. 适用于参数可调结构的非定常气动力降阶建模方法[J]. 航空学报, 2017,38(6): 220829. DOI: 10.7527/S1000-6893.2017.120829.(WANG Ziyi, ZHANG Weiwei. Unsteady aerodynamic reduced-order modeling method for parameter changeable structure[J]. Acta Aeronautica et Astronautica Sinica,2017,38(6): 220829. DOI: 10.7527/S1000-6893.2017.120829.(in Chinese))
|
[16] |
ZHANG W W, CHEN K J, YE Z Y. Unsteady aerodynamic reduced-order modeling of an aeroelastic wing using arbitrary mode shapes[J]. Journal of Fluids and Structures,2015,58: 254-270.
|
[17] |
CHEN G, LI D F, ZHOU Q, et al. Efficient aeroelastic reduced order model with global structural modifications[J]. Aerospace Science and Technology,2018,76: 1-13.
|
[18] |
梅小宁, 杨树兴, 陈军. 低雷诺数小型折叠无人机翼型优化设计[J]. 航空计算技术, 2010,40(2): 14-17.(MEI Xiaoning, YANG Shuxing, CHEN Jun. Optimization design for low Reynolds number foldable Uav airfoil[J]. Aeronautical Computer Technique,2010,40(2): 14-17.(in Chinese))
|
[19] |
黎旭, 龚春林, 谷良贤, 等. 基于CAD的半解析参数化几何建模方法[J]. 计算机与现代化, 2014(4): 1-7.(LI Xu, GONG Chunlin, GU Liangxian, et al. CAD-based semi-analytical parametric geometry modeling method[J]. Computer and Modernization,2014(4): 1-7.(in Chinese))
|
[20] |
张德虎, 席胜, 田鼎. 典型翼型参数化方法的翼型外形控制能力评估[J]. 航空工程进展, 2014,5(3): 281-288.(ZHANG Dehu, XI Sheng, TIAN Ding. Geometry control ability evaluation of classical airfoil parametric methods[J]. Advances in Aeronautical Science and Engineering,2014,5(3): 281-288.(in Chinese))
|
[21] |
廖炎平, 刘莉, 龙腾. 几种翼型参数化方法研究[J]. 弹箭与制导学报, 2011,31(3): 160-164.(LIAO Yanping, LIU Li, LONG Teng. The research on some parameterized methods for airfoil[J]. Journal of Projectiles, Rockets, Missiles and Guidance,2011,31(3): 160-164.(in Chinese))
|
[22] |
吴宗敏. 径向基函数、散乱数据拟合与无网格偏微分方程数值解[J]. 工程数学学报, 2002,19(2): 1-12.(WU Zongmin. Radial basis function scattered data interpolation and the meshless method of numerical solution of PDEs[J]. Journal of Engineering Mathematics,2002,19(2): 1-12.(in Chinese))
|
[23] |
林谢昭, 胡振明. 流固耦合模型的适应性POD降阶方法研究现状[J]. 机械制造与自动化, 2017,46(4): 78-84.(LIN Xiezhao, HU Zhenming. Present situation of adaptive POD method for fluid-solid coupling model[J]. Machine Building & Automation,2017,46(4): 78-84.(in Chinese))
|