ZHANG Jun, LI Lizhou, YUAN Meini. Optimization of RBF Parameterized Airfoils With the Aerodynamic ROM[J]. Applied Mathematics and Mechanics, 2019, 40(3): 250-258. doi: 10.21656/1000-0887.390187
Citation: ZHANG Jun, LI Lizhou, YUAN Meini. Optimization of RBF Parameterized Airfoils With the Aerodynamic ROM[J]. Applied Mathematics and Mechanics, 2019, 40(3): 250-258. doi: 10.21656/1000-0887.390187

Optimization of RBF Parameterized Airfoils With the Aerodynamic ROM

doi: 10.21656/1000-0887.390187
Funds:  The National Natural Science Foundation of China(51775518)
  • Received Date: 2018-06-28
  • Rev Recd Date: 2018-11-29
  • Publish Date: 2019-03-01
  • Under the assumption of small perturbations and weak nonlinearity, a new airfoil optimization method was proposed based on the aerodynamic reduction order model (ROM) and the radial basis function (RBF) parameterization. The RBF was used to parameterize the airfoil shape perturbations, the ROM kernels of the airfoil aerodynamics corresponding to shape perturbations were identified with the computational fluid dynamics (CFD), the aerodynamic ROM was built through superposition, and the airfoil liftdrag ratio was calculated and optimized with the ROM. The optimized results of the NACA0012 airfoil show that, the proposed optimization method based on the ROM is feasible and can greatly accelerate the airfoil optimization procedure.
  • loading
  • [1]
    ZHANG M C, GOU W X, LI L, et al. Multidisciplinary design and multi-objective optimization on guide fins of twin-web disk using Kriging surrogate model[J]. Structural & Multidisciplinary Optimization,2017,55(1): 361-373.
    [2]
    WEI P F, WANG Y Y, TANG C H. Time-variant global reliability sensitivity analysis of structures with both input random variables and stochastic processes[J]. Structural and Multidisciplinary Optimization,2017,55(5): 1883-1898.
    [3]
    GHOREYSHI M, JIRASEK A, CUMMINGS M R. Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics[J]. Progress in Aerospace Sciences,2014,71: 167-217.
    [4]
    SILVA W A. Reduced-order models based on linear and nonlinear aerodynamic impulse responses[J]. AIAA Journal,1999,233: 1-11.
    [5]
    SU D, ZHANG W W, MA M S, et al. An efficient coupled method of cascade flutter investigation based on reduced order model[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.San Jose City, USA, 2013.
    [6]
    SU D, ZHANG W W, YE Z Y. A reduced order model for uncoupled and coupled cascade flutter analysis[J]. Journal of Fluids and Structures,2016,61: 410-430.
    [7]
    XU K, ZHAO L, GE Y J. Reduced-order modeling and calculation of vortex-induced vibration for large-span bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics,2017,167: 228-241.
    [8]
    WONG A, NITZSCHE F, KHALID M. Formulation of reduced-order models for blade-vortex interaction using modifiedvolterra kernels[C]// The 〖STBX〗30th European Rotorcraft Forum(ERF).Marseilles, France, 2004.
    [9]
    HE L. Fourier methods forturbomachinery applications[J]. Progress in Aerospace Sciences,2010,46: 329-341.
    [10]
    YAO W G, JAIMAN R K. A harmonic balance technique for the reduced-order computation of vortex-induced vibration[J]. Journal of Fluids and Structures,2016,65: 313-332.
    [11]
    罗骁, 张新燕, 张珺, 等. 基于谐波平衡法的尾流激励的叶片振动降阶模型方法[J]. 应用数学和力学, 2018,39(8): 892-899.(LUO Xiao, ZHANG Xinyan, ZHANG Jun, et al. A reduced-order model method for blade vibration due to upstream wake based on the harmonic balance method[J]. Applied Mathematics and Mechanics,2018,39(8): 892-899.(in Chinese))
    [12]
    BOURGUET R, BRAZA M, DERVIEUX A. Reduced-order modeling of transonic flows around an airfoil submitted to small deformations[J]. Journal of Computational Physics,2011,230(1): 159-184.
    [13]
    LI X T, LIU Y L, KOU J Q, et al. Reduced-order thrust modeling for an efficiently flapping airfoil using system identification method[J]. Journal of Fluids and Structures,2017,69: 137-153.
    [14]
    KOU J Q, ZHANG W W. Multi-kernel neural networks for nonlinear unsteady aerodynamic reduced-order modeling[J]. Aerospace Science and Technology,2017,67: 309-326.
    [15]
    王梓伊, 张伟伟. 适用于参数可调结构的非定常气动力降阶建模方法[J]. 航空学报, 2017,38(6): 220829. DOI: 10.7527/S1000-6893.2017.120829.(WANG Ziyi, ZHANG Weiwei. Unsteady aerodynamic reduced-order modeling method for parameter changeable structure[J]. Acta Aeronautica et Astronautica Sinica,2017,38(6): 220829. DOI: 10.7527/S1000-6893.2017.120829.(in Chinese))
    [16]
    ZHANG W W, CHEN K J, YE Z Y. Unsteady aerodynamic reduced-order modeling of an aeroelastic wing using arbitrary mode shapes[J]. Journal of Fluids and Structures,2015,58: 254-270.
    [17]
    CHEN G, LI D F, ZHOU Q, et al. Efficient aeroelastic reduced order model with global structural modifications[J]. Aerospace Science and Technology,2018,76: 1-13.
    [18]
    梅小宁, 杨树兴, 陈军. 低雷诺数小型折叠无人机翼型优化设计[J]. 航空计算技术, 2010,40(2): 14-17.(MEI Xiaoning, YANG Shuxing, CHEN Jun. Optimization design for low Reynolds number foldable Uav airfoil[J]. Aeronautical Computer Technique,2010,40(2): 14-17.(in Chinese))
    [19]
    黎旭, 龚春林, 谷良贤, 等. 基于CAD的半解析参数化几何建模方法[J]. 计算机与现代化, 2014(4): 1-7.(LI Xu, GONG Chunlin, GU Liangxian, et al. CAD-based semi-analytical parametric geometry modeling method[J]. Computer and Modernization,2014(4): 1-7.(in Chinese))
    [20]
    张德虎, 席胜, 田鼎. 典型翼型参数化方法的翼型外形控制能力评估[J]. 航空工程进展, 2014,5(3): 281-288.(ZHANG Dehu, XI Sheng, TIAN Ding. Geometry control ability evaluation of classical airfoil parametric methods[J]. Advances in Aeronautical Science and Engineering,2014,5(3): 281-288.(in Chinese))
    [21]
    廖炎平, 刘莉, 龙腾. 几种翼型参数化方法研究[J]. 弹箭与制导学报, 2011,31(3): 160-164.(LIAO Yanping, LIU Li, LONG Teng. The research on some parameterized methods for airfoil[J]. Journal of Projectiles, Rockets, Missiles and Guidance,2011,31(3): 160-164.(in Chinese))
    [22]
    吴宗敏. 径向基函数、散乱数据拟合与无网格偏微分方程数值解[J]. 工程数学学报, 2002,19(2): 1-12.(WU Zongmin. Radial basis function scattered data interpolation and the meshless method of numerical solution of PDEs[J]. Journal of Engineering Mathematics,2002,19(2): 1-12.(in Chinese))
    [23]
    林谢昭, 胡振明. 流固耦合模型的适应性POD降阶方法研究现状[J]. 机械制造与自动化, 2017,46(4): 78-84.(LIN Xiezhao, HU Zhenming. Present situation of adaptive POD method for fluid-solid coupling model[J]. Machine Building & Automation,2017,46(4): 78-84.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1418) PDF downloads(720) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return