Citation: | BAO Siyuan, DENG Zichen. An Average Vector Field Method for Nonlinear Vibration Analysis[J]. Applied Mathematics and Mechanics, 2019, 40(1): 47-57. doi: 10.21656/1000-0887.390178 |
[1] |
冯康, 秦孟兆. 哈密尔顿系统的辛几何算法[M]. 杭州: 浙江科学技术出版社, 2003.(FENG Kang, QIN Mengzhao. Symplectic Geometric Algorithm for Hamilton System [M]. Hangzhou: Zhejiang Science and Technolog Press. 2003.(in Chinese))
|
[2] |
秦孟兆, 王雨顺. 偏微分方程中的保结构算法[M]. 杭州: 浙江科技出版社, 2010.(QIN Mengzhao, WANG Yushun. Structure-Preserving Algorithms for Partial Differential Equation [M]. Hangzhou: Zhejiang Science and Technolog Press, 2010.(in Chinese))
|
[3] |
FENG K. Difference schemes for Hamiltonian formalism and symplectic geometry[J]. Journal of Computational Mathematics,1986,4(3): 279-289.
|
[4] |
胡伟鹏, 邓子辰. 无限维动力学系统的保结构分析方法[M]. 西安: 西北工业大学出版社, 2015.(HU Weipeng, DENG Zichen. The Infinite Dimensional Dynamical System Structure Analysis Method [M]. Xi’an: Northwestern Polytechnical University Press, 2015.(in Chinese))
|
[5] |
HU W P, DENG Z C, ZHANG Y. Multi-symplectic method for peakon-antipeakon collision of quasi-Degasperis-Procesi equation[J]. Computer Physics Communications,2014,185(7): 2020-2028.
|
[6] |
高强, 钟万勰. Hamilton系统的保辛-守恒积分算法[J]. 动力学与控制学报, 2009,7(3): 193-199.(GAO Qiang, ZHONG Wanxie. The symplectic and energy preserving method for the integration of Hamilton system[J]. Journal of Dynamics and Control,2009,7(3): 193-199.(in Chinese))
|
[7] |
BRUGNANO L, IAVERNARO F, TRGIANTE D. A two-step, fourth-order method with energy preserving properties[J]. Computer Physics Communications,2012,183(9): 1860-1868.
|
[8] |
陈璐, 王雨顺. 保结构算法的相位误差分析及其修正[J]. 计算数学, 2014,36(3): 271-290.(CHEN Lu, WANG Yushun. Phase error analysis and correction of structure preserving algorithms[J]. Mathematica Numerica Sinica,2014,36(3): 271-290.(in Chinese))
|
[9] |
叶霄霄. 基于平均向量场方法的暂态稳定计算[D]. 硕士学位论文. 宜昌: 三峡大学, 2015.(YE Xiaoxiao. Transient stability calculation based on the average vector field method[D]. Master Thesis. Yichang: China Three Gorges University, 2015.(in Chinese))
|
[10] |
QUISPEL G R W, MCLACHLAN D I. A new class of energy-preserving numerical integration methods[J]. Journal of Physics A: Mathematical and Theoretical,2008,41(4): 045206. DOI: 10.1088/1751-8113/41/4/045206.
|
[11] |
CELLEDONI E, MCLACHLAND I, OWREN B, et al. Energy-preserving integrators and the structure of B-series[J]. Foundations of Computational Mathematics,2010,10(6): 673-693.
|
[12] |
CIESLINSKI J L. Improving the accuracy of the AVF method[J]. Journal of Computational and Applied Mathematics,2014,259: 233-243.
|
[13] |
CAI J X, WANG Y S, GONG Y Z. Numerical analysis of AVF methods for three-dimensional time-domain Maxwell’s equations[J]. Journal of Scientific Computing,2016,66(1): 141-176.
|
[14] |
李昊辰, 孙建强, 骆思宇. 非线性薛定谔方程的平均向量场方法[J]. 计算数学, 2013,35(1): 60-66.(LI Haochen, SUN Jianqiang, LUO Siyu. An averaged vector field method for the nonlinear Schrdinger equation[J]. Mathematica Numerica Sinica,2013,35(1): 60-66.(in Chinese))
|
[15] |
HAIRER E, LUBICH C, WANNER G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations [M]. Berlin: Springer, 2006.
|
[16] |
陈璐. 保结构算法的相位误差分析及其修正[D]. 硕士学位论文. 南京: 南京师范大学, 2014.(CHEN Lu. Phase error analysis and correction of structure preserving algorithms[D]. Master Thesis. Nanjing: Nanjing Normal University, 2014.(in Chinese))
|
[17] |
邢誉峰, 杨蓉. 动力学平衡方程的中点辛差分求解格式[J]. 力学学报, 2007,39(1): 100-105.(XING Yufeng, YANG Rong. Application of Euler midpoint symplectic integration method for the solution of dynamic equilibrium equations[J]. Chinese Journal of Theoretical and Applied Mechanics,2007,39(1): 100-105.(in Chinese))
|
[18] |
刘晓梅, 周钢, 王永泓, 等. 辛算法的纠飘研究[J]. 北京航空航天大学学报, 2013,39(1): 22-26.(LIU Xiaomei, ZHOU Gang, WANG Yonghong, et al. Rectifying drifts of symplectic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2013,39(1): 22-26.(in Chinese))
|
[19] |
邢誉峰, 杨蓉. 单步辛算法的相位误差分析及修正[J]. 力学学报, 2007,39(5): 668-671.(XING Yufeng, YANG Rong. Phase errors and their correction in symplectic implicit single-step algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics,2007,39(5): 668-671.(in Chinese))
|
[20] |
秦于越, 邓子辰, 胡伟鹏. 谐振子的辛欧拉分析方法[J]. 动力学与控制学报, 2014,12(1): 9-12.(QIN Yuyue, DENG Zichen, HU Weipeng. Symplectic Euler method for harmonic oscillator[J]. Journal of Dynamics and Control,2014,12(1): 9-12.(in Chinese))
|
[21] |
李鹏松, 孙维鹏, 吴柏生. 单摆大振幅振动的解析逼近解[J]. 振动与冲击, 2008,27(2): 72-74.(LI Pengsong, SUN Weipeng, WU Baisheng. Analytical approximate solutions to large amplitude oscillation of a simple pendulum[J]. Journal of Vibration and Shock,2008,27(2): 72-74.(in Chinese))
|
[22] |
吕中荣, 刘济科. 摆的振动分析[J]. 暨南大学学报(自然科学版), 1999,20(1): 42-45.(L Zhongrong, LIU Jike. Vibration analysis of a pendulum[J]. Journal of Jinan University(Natural Science),1999,20(1): 42-45.
|
[23] |
周凯红, 王元勋, 李春植. 微分求积法在单摆非线性振动分析中的应用[J]. 力学与实践, 2003,25(3): 50-52.(ZHOU Kaihong, WANG Yuanxun, LI Chunzhi. The application of differential quadrature method in nonlinear vibration analysis of simple pendulum[J]. Mechanics in Engineerin g, 2003,25(3): 50-52.(in Chinese))
|
[24] |
李文博, 赵定柏. 开普勒问题的一种简单处理[J]. 大学物理, 2000,19(1): 45-47.(LI Wenbo, ZHAO Dingbai. A simple treatment of the Kepler problem[J]. College Physics,2000,19(1): 45-47.(in Chinese))
|