Citation: | YANG Zhao, LAN Jun, WU Yongjun. On Solutions to Several Classes of Differential-Algebraic Equations Based on Artificial Neural Networks[J]. Applied Mathematics and Mechanics, 2019, 40(2): 115-126. doi: 10.21656/1000-0887.390122 |
[1] |
DAI L. Singular Control Systems (Ser Lecture Notes in Control and Information Sciences) [M]. Berlin: Springer, 1989.
|
[2] |
SIMEON B. Computational Flexible Multibody Dynamics: a Differential-Algebraic Approach [M]. Berlin: Springer, 2013.
|
[3] |
ILCHMANN A, REIS T. Surveys in Differential-Algebraic Equations II [M]. London: Springer, 2015.
|
[4] |
BENNER P, BOLLHROFER M, KRESSNER D,et al. Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory [M]. London: Springer, 2015.
|
[5] |
BERGER T. The zero dynamics form for nonlinear differential-algebraic systems[J]. IEEE Transactions on Automatic Control,2017,62(8): 4131-4137.
|
[6] |
SCARCIOTTI G. Steady-state matching and model reduction for systems of differential-algebraic equations[J]. IEEE Transactions on Automatic Control,2017,62(10): 5372-5379.
|
[7] |
MOSTACCIUOLO E, VASCA F, BACCARI S. Differential algebraic equations and averaged models for switched capacitor converters with state jumps[J]. IEEE Transactions on Power Electronics,2018,33(4): 3472-3483.
|
[8] |
GEAR C W. Simultaneous numerical solution of differential-algebraic equations[J]. IEEE Transactions on Circuit Theory,1971,18(1): 89-95.
|
[9] |
CASH J R. Modified extended backward differentiation formulate for the numerical solution of stiff initial value problems in ODEs and DAEs[J]. Computers and Mathematics With Applications,2000,125(1/2): 117-130.
|
[10] |
PETZOLD L. Differential/algebraic equations are not ODEs[J]. Journal on Scientific and Statistical Computing,1982,3(3): 367-384.
|
[11] |
HAIRER E, LUBICH C, ROCHE M. The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods [M]. Berlin: Springer, 1989.
|
[12] |
GUZEL N, BAYRAM M. Numerical solution of differential-algebraic equations with index-2[J]. Applied Mathematics and Computation,2006,174(2): 1279-1289.
|
[13] |
KARTA M, ELIK E. On the numerical solution of differential-algebraic equations with Hessenberg index-3[J]. Discrete Dynamics in Nature and Society,2012,2012: 147240. DOI: 10.1155/2012/147240.
|
[14] |
SARAVI M, BABOLIAN E, ENGLAND R, et al. System of linear ordinary differential and differential-algebraic equations and pseudo-spectral method[J]. Computers and Mathematics With Applications,2010,59(4): 1524-1531.
|
[15] |
HOSSEINI M M. Adomian decomposition method for solution of differential-algebraic equations[J]. Journal of Computational and Applied Mathematics,2006,197(2): 495-501.
|
[16] |
NEWMAN C K. Exponential integrators for the incompressible Navier-Stokes equations[D]. PhD Thesis. Blacksburg: Virginia Polytechnic Institute, 2003.
|
[17] |
LIU C S, CHEN W, LIU L W. Solving mechanical systems with nonholonomic constraints by a Lie-group differential algebraic equations method[J]. Journal of Engineering Mechanics,2017,143(9): 04017097.
|
[18] |
HAUG E J. An index 0 differential algebraic equation formulation for multibody dynamics nonholonomic constraints[J]. Mechanics Based Design of Structures and Machines,2018,46(1): 38-65.
|
[19] |
潘振宽, 赵维加, 洪嘉振, 等. 多体系统动力学微分/代数方程组数值方法[J]. 力学进展, 1996,26(1): 28-40.(PAN Zhenkuan, ZHAO Weijia, HONG Jiazhen, et al. On numerical algorithms for differential/algebraic equations of motion of multibody systems[J]. Advances in Machines,1996,26(1): 28-40.(in Chinese))
|
[20] |
赵维加, 潘振宽. 存在相关约束Euler-Lagrange方程解的存在唯一性[J]. 力学与实践, 2002,24(3): 49-54.(ZHAO Weijia, PAN Zhenkuan. Existence and uniqueness of solutions of Euler-Lagrange equation with dependent constrains[J]. Mechanics in Engineering,2002,24(3): 49-54.(in Chinese))
|
[21] |
吴永. 约束多体系统动力学方程的辛算法[J]. 重庆大学学报, 2004,27(6): 102-105.(WU Yong. Symplectic methods of the dynamic equations of constrained multibody systems[J]. Journal of Chongqing University,2004,27(6): 102-105.(in Chinese))
|
[22] |
王加霞. Euler-Lagrange方程的高精度计算方法[J]. 青岛大学学报(自然科学版), 2008,21(1): 22-26.(WANG Jiaxia. A algorithm of high precision for Euler-Lagrange equations[J]. Journal of Qingdao University (Natural Sciences),2008,21(1): 22-26.(in Chinese))
|
[23] |
刘颖, 马建敏. 多体系统动力学方程的无违约数值计算方法[J]. 计算力学学报, 2010,27(5): 942-947.(LIU Ying, MA Jianmin. Precise numerical solution for multi-body system’s equations of motion based on algorithm without constraint violation[J]. Chinese Journal of Computational Mechanics,2010,27(5): 942-947.(in Chinese))
|
[24] |
马秀腾, 翟彦博, 谢守勇. 多体系统指标2运动方程HHT方法违约校正[J]. 力学学报, 2017,49(1): 175-181.(MA Xiuteng, ZHAI Yanbo, XIE Shouyong. HHT method with constraints violation correction in the index 2 equations of motion for multibody systems[J]. Chinese Journal of Theoretical and Applied Mechanics,2017,49(1): 175-181.(in Chinese))
|
[25] |
CHOU J S, NGO N T, CHONG W K. The use of artificial intelligence combiners for modeling steel pitting risk and corrosion rate[J]. Engineering Applications of Artificial Intelligence,2017,65: 471-483.
|
[26] |
LAGARIS I E, LIKAS A, FOTIADIS D I. Artificial neural networks for solving ordinary and partial differential equations[J]. IEEE Transactions on Neural Networks,1998,9(5): 987-1000.
|
[27] |
ROSTAMI F, JAFARIAN A. A new artificial neural network structure for solving high order linear fractional differential equations[J]. International Journal of Computer Mathematics,2018,95(3): 528-539.
|
[28] |
PARIPOUR M, FERRARA M, SALIMI M. Approximate solutions by artificial neural network of hybrid fuzzy differential equations[J]. Advances in Mechanical Engineering,2017,9(9): 1-9.
|
[29] |
BISHOP C M. Neural Networks for Pattern Recognition [M]. Oxford: Oxford University Press, 1995.
|
[30] |
龚纯, 王正林. 精通MATLAB最优化计算[M]. 北京: 电子工业出版社, 2009.(GONG Chun, WANG Zhenglin. Proficient in MATLAB Optimization Calculation [M]. Beijing: Publishing House of Electronics Industry, 2009.(in Chinese))
|