BAO Liping, LI Wenyan, WU Liqun. Singularly Perturbed Solutions of NonFourier Temperature Field Distribution in Single-Layer Materials[J]. Applied Mathematics and Mechanics, 2019, 40(5): 536-545. doi: 10.21656/1000-0887.390112
Citation: BAO Liping, LI Wenyan, WU Liqun. Singularly Perturbed Solutions of NonFourier Temperature Field Distribution in Single-Layer Materials[J]. Applied Mathematics and Mechanics, 2019, 40(5): 536-545. doi: 10.21656/1000-0887.390112

Singularly Perturbed Solutions of NonFourier Temperature Field Distribution in Single-Layer Materials

doi: 10.21656/1000-0887.390112
Funds:  The National Natural Science Foundation of China(51175134)
  • Received Date: 2018-04-11
  • Rev Recd Date: 2018-11-12
  • Publish Date: 2019-05-01
  • A temperature field model for single-layer materials was constructed with the non-Fourier heat conduction law, i.e. a type of singularly perturbed hyperbolic equations with small parameters in an unbounded domain. The asymptotic solution to the problem was obtained with the singularly perturbed expansion method. Firstly, the singular perturbation method was used to obtain the external solution and boundary layer correction terms of the problem. Through estimation of the maximum norms of the internal solution and the external solution, and the maximum norms of the time derivative, and under the theory of linear parabolic equations, the existence and uniqueness of the internal and external solutions were obtained, and the formal asymptotic expansion of the solution was obtained. The L2 estimator of the asymptotic solution was given with the remainder estimator. The uniform validity of the asymptotic solution and the distribution of the temperature field in the unbounded domain were got. Through singular perturbation analysis, the relationship between the non-Fourier temperature field and the Fourier temperature field was given, and the specific behaviors of the non-Fourier temperature field were described.
  • loading
  • [1]
    张浙, 刘登瀛. 非傅里叶热传导研究进展[J]. 力学进展, 2000,30(3): 446-456.(ZHANG Zhe, LIU Dengying. Progress in the research of non-Fourier heat conduction[J]. Advance in Mechanics,2000,30(3): 446-456.(in Chinese))
    [2]
    李金娥, 王保林, 常冬梅. 层合材料的非傅里叶热传导及热应力[J]. 固体力学学报, 2011,32(S): 248-253.(LI Jin’e, WANG Baolin, CHANG Dongmei. Non-Fourier heat conduction and thermal stress of laminated materials[J]. Chinese Journal of Solid Mechanics,2011,32(S): 248-253.(in Chinese))
    [3]
    MAO Y D, XU M T. Non-Fourier heat conduction in a thin gold film heated by an ultra-fast-laser[J]. Science China Technological Sciences,2015,58(4): 638-649.
    [4]
    张丽静, 尚新春. 由激光辐照固体表面引起的非Fourier三维传热问题的解析解[J]. 北京理工大学学报, 2016,36(8): 876-880.(ZHANG Lijing, SHANG Xinchun. Analytical solution of non-Fourier three-dimensional heat transfer problem induced by laser irradiation on solid surface[J]. Transactions of Beijing Institute of Technology,2016,〖STHZ〗 36(8): 876-880.(in Chinese))
    [5]
    WANG H D. Theoretical and Experimental Studies on Non-Fourier Heat Conduction Based on Thermomass Theory [M]. Berlin: Springer, 2014.
    [6]
    KUNDU B, LEE K S. Fourier and non-Fourier heat conduction analysis in the absorber plates of a flat-plate solar collector[J]. Solar Energy,2012,86(10): 3030-3039.
    [7]
    赵伟涛, 吴九汇. 平板在任意周期表面热扰动作用下的非Fourier热传导的求解与分析[J]. 物理学报, 2013,62(18): 288-296.(ZHAO Weitao, WU Jiuhui. Solution and analysis of non-Fourier heat conduction in a plane slab under arbitrary periodic surface thermal disturbance[J]. Acta Physica Sinica,2013,62(18): 288-296.(in Chinese))
    [8]
    王晓燕, 刘洪伟, 李杰, 等. 基于非傅里叶的有限空圆柱体的温度场解析解及其在谐波均匀的圆柱体上的应用[J]. 数学的实践与认识, 2017,〖STHZ〗 47(19): 105-110.(WANG Xiaoyan, LIU Hongwei, LI Jie, et al. Analytical solution of non-Fourier temperature field of finite hollow cylinder and application of harmonic uniform cylinder[J]. Mathematics in Practice and Theory,2017,47(19): 105-110.(in Chinese))
    [9]
    DONG Y, CAO B Y, GUO Z Y. Temperature innonequilibrium states and non-Fourier heat conduction[J]. Physical Review E,2013,87(3): 32150.
    [10]
    张盛, 张洪武, 毕金英, 等. 多维非经典热传导问题的时间-空间多尺度高阶均匀化分析[J]. 复合材料学报, 2009,26(1): 123-133.(ZHANG Sheng, ZHANG Hongwu, BI Jinying, et al. Multi-dimensional nonclassical heat conduction analysis with multiple spatial and temporal scales analysis method[J]. Acta Materiae Compositae Sinica,2009,26(1): 123-133.(in Chinese))
    [11]
    康连城. 关于非线性初边值问题的奇摄动[J]. 数学年刊: A辑(中文版), 1989,10(5): 529-531.(KANG Liancheng. Singular perturbation for nonlinear initial boundary value problems[J]. Chinese Annals of Mathematics,1989,10(5): 529-531.(in Chinese))
    [12]
    康连城. 关于非线性初边值问题的奇摄动[J]. 应用数学和力学, 1992,13(2): 135-143.(KANG Liancheng. Singular perturbation for nonlinear initial boundary value problems[J]. Applied Mathematics and Mechanics,1992,13(2): 135-143.(in Chinese))
    [13]
    BERDYSHEV S A, CABADA A, KARIMOV E T. On a non-local boundary problem for a parabolic-hyperbolic equation involving a Riemann-Liouville fractional differential operator[J]. Nonlinear Analysis,2013,75(6): 3268-3273.
    [14]
    关建飞, 沈中华, 许伯强, 等. 板状材料中脉冲激光激发超声导波的数值分析[J]. 光电子·激光, 2005,16(2): 231-235.(GUAN Jianfei, SHEN Zhonghua, XU Boqiang, et al. Numerical analysis of ultrasonic guided waves generated by pulsed laser in plate[J]. Journal of Optoelectronics·Laser,2005,〖STHZ〗 16(2): 231-235.(in Chinese))
    [15]
    沈中华, 许伯强, 倪晓武, 等. 单层和双层材料中的脉冲激光超声数值模拟[J]. 中国激光, 2004,〖STHZ〗 31(10): 1275-1280.(SHEN Zhonghua, XU Boqiang, NI Xiaowu, et al. Numerical simulation of pulsed laser induced ultrasound in monolayer and double layer materials[J]. Chinese Journal of Lasers,2004,31(10): 1275-1280.(in Chinese))
    [16]
    伍卓群, 尹景学, 王春明. 椭圆与抛物型方程引论[M]. 北京: 科学出版社, 2003.(WU Zhuoqun, YIN Jingxue, WANG Chunming. Introduction to Elliptic and Parabolic Equations [M]. Beijing: Science Press, 2003.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1183) PDF downloads(432) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return