Citation: | CAO Jianzhi, TAN Jun, WANG Peiguang. Hopf Bifurcation Analysis of a Model for Spruce Budworm Populations With Delays[J]. Applied Mathematics and Mechanics, 2019, 40(3): 332-342. doi: 10.21656/1000-0887.390111 |
[1] |
FLEMING R A, SHOEMAKER C A. Evaluating models for spruce budworm-forest management: comparing output with regional field data[J]. Ecological Applications: a Publication of the Ecological Society of America,1992,2(4): 460-477.
|
[2] |
MAGNUSSEN S, ALFARO R I, BOUDEWYN P. Survival-time analysis of white spruce during spruce budworm defoliation[J]. Silva Fenncia,2005,39(2): 177-189.
|
[3] |
NIE Z Y, MACLEAN D A, TAYLOR A R. Forest overstory composition and seedling height influence defoliation of understory regeneration by spruce budworm[J]. Forest Ecology and Management,2018,409: 353-360.
|
[4] |
ROYAMA T. Population dynamics of the spruce budworm choristoneura fumiferana[J]. Ecological Monographs,1984,54(4): 429-462.
|
[5] |
MEIGS G W, KENNEDY R E, GRAY A N, et al. Spatiotemporal dynamics of recent mountain pine beetle and western spruce budworm outbreaks across the Pacific Northwest Region, USA[J]. Forest Ecology and Management,2015,339: 71-86.
|
[6] |
ALFARO R I, BERG J, AXELSON J. Periodicity of western spruce budworm in Southern British Columbia, Canada[J]. Forest Ecology and Management,2014,315: 72-79.
|
[7] |
NEALIS V G, TURNQUIST R, MORIN B, et al. Baculoviruses in populations of western spruce budworm[J]. Journal of Invertebrate Pathology,2015,127: 76-80.
|
[8] |
王双明, 张明军, 樊馨蔓. 一类具时滞的周期logistic传染病模型空间动力学研究[J]. 应用数学和力学, 2018,39(2): 226-238.(WANG Shuangming, ZHANG Mingjun, FAN Xinman. Spatial dynamics of periodic reaction-diffusion epidemic models with delay and logistic growth[J]. Applied Mathematics and Mechanics,2018,39(2): 226-238.(in Chinese))
|
[9] |
LUDWIG D, JONES D D, HOLLING C S. Qualitative analysis of insect outbreak systems: the spruce budworm forest[J]. Journal of Animal Ecology,1978,47: 315-332.
|
[10] |
LUDWIG D, ARONSON D G, WEINBERGER H F. Spatial patterning of the spruce budworm[J]. Journal of Mathematical Biology,1979,〖STHZ〗 8(3): 217-258.
|
[11] |
RASMUSSEN A, WYLLER J, VIK J O. Relaxation oscillations in spruce-budworm interactions[J]. Nonlinear Analysis: Real World Applications,2011,12(1): 304-319.
|
[12] |
HASSELL D C, ALLWRIGHT D J, FOWLER A C. A mathematical analysis of Jone’s site model for spruce budworm infestation[J]. Journal of Mathematical Biology,1999,38(5): 377-421.
|
[13] |
SINGH M, EASTON A, CUI G, et al. A numerical study of the spruce budworm reaction diffusion equation with hostile boundaries[J]. Natural Resource Modeling,2000,13(4): 535-549.
|
[14] |
VAIDYA N K, WU J H. Modeling spruce budworm population revisited: impact of physiological structure on outbreak control[J]. Bulletin of Mathematical Biology,2008,70(3): 769-784.
|
[15] |
XU X F, WEI J J. Bifurcation analysis of a spruce budworm model with diffusion and physiological structures[J]. Journal of Differential Equations,2017,262(10): 5206-5230.
|
[16] |
魏俊杰, 王洪滨, 蒋卫华. 时滞微分方程的分支理论及应用[M]. 北京: 科学出版社, 2012.(WEI Junjie, WANG Hongbin, JIANG Weihua. Bifurcation Theory and Application of Delay Differential Equation [M]. Beijing: Science Press, 2012.(in Chinese))
|
[17] |
WAN A Y, ZOU X F. Hopf bifurcation analysis for a model of genetic regulatory system with delay[J]. Journal of Mathematical Analysis and Applications,2009,356(2): 464-476.
|