Citation: | XU Chaoyang, MENG Yingfeng, GUO Jinsong, LI Gao, QIU Quanfeng. Research on the Implicit AUSMV Algorithm for the 1D Gas-Liquid Two-Phase Drift Flux Model[J]. Applied Mathematics and Mechanics, 2019, 40(4): 386-397. doi: 10.21656/1000-0887.390110 |
[1] |
ZUBER N, FINDLAY J A. Average volumetric concentration in two-phase flow systems[J]. Journal of Heat Transfer,1965,87(4): 453-468.
|
[2] |
BOUR J A. Wave phenomena and one-dimensional two-phase flow models[J]. Multiphase Science and Technology,1997,9(1): 63-107.
|
[3] |
EVJE S, FLTTEN T. Hybrid flux-splitting schemes for a common two-fluid model[J]. Journal of Computational Physics,2003,192(1): 175-210.
|
[4] |
EVJE S, FLTTEN T. On thewave structure of two-phase flow models[J]. SIAM Journal on Applied Mathematics,2006,67(2): 487-511.
|
[5] |
LIOU M S, STEFFEN C J. A new flux splitting scheme[J]. Journal of Computational Physics,1993,107(1): 23-29.
|
[6] |
KITAMURA K, SHIMA E. Towards shock-stable and accurate hypersonic heating computations: a new pressure flux for AUSM-family schemes[J]. Journal of Computational Physics,2013,245: 62-83.
|
[7] |
CHANG C H, LIOU M S. A robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM+-up scheme[J]. Journal of Computational Physics,2008,227(1): 840-873.
|
[8] |
EVJE S, FJELDE K K. Hybrid flux-splitting schemes for a two-phase flow model[J]. Journal of Computational Physics,2002,175(2): 674-701.
|
[9] |
EVJE S, FJELDE K K. On a rough AUSM scheme for a one-dimensional two-phase model[J]. Computers & Fluids,2003,32(10): 1497-1530.
|
[10] |
NIU Y Y, LIN Y C, CHANG C H. A further work on multi-phase two-fluid approach for compressible multi-phase flows[J]. International Journal for Numerical Method in Fluids,2008,58(8): 879-896.
|
[11] |
NIU Y Y. Computations of two-fluid models based on a simple and robust hybrid primitive variable Riemann solver with AUSMD[J]. Journal of Computational Physics,2016,308: 389-410.
|
[12] |
KITAMURA K, NONOMURA T. Simple and robust HLLC extensions of two-fluid AUSM for multiphase flow computations[J]. Computers & Fluids,2014,100: 321-335.
|
[13] |
EVJE S, FLTTEN T. Weaklyimplicit numerical schemes for a two-fluid model[J]. SIAM Journal on Scientific Computing,2005,26(5): 1449-1484.
|
[14] |
EVJE S, FLTTEN T. CFL-violating numerical schemes for a two-fluid model[J]. Journal of Scientific Computing,2006,29(1): 83-114.
|
[15] |
COLONIA S, STEIJL R, BARAKOS G N. Implicit implementation of the AUSM+ and AUSM+-up schemes[J]. International Journal for Numerical Method in Fluids,2014,75(10): 687-712.
|
[16] |
ONUR O, EYI S. Effects of the Jacobian evaluation on Newton’s solution of the Euler equations[J]. International Journal for Numerical Method in Fluids,2005,49(2): 211-231.
|
[17] |
ZENG Q L, AYDERMIR N U, LIEN F S, et al. Comparison of implicit and explicit AUSM-family schemes for compressible multiphase flows[J]. International Journal for Numerical Method in Fluids,2015,77(1): 43-61.
|
[18] |
ZENG Q L, AYDERMIR N U, LIEN F S, et al. Extension of staggered-grid-based AUSM-family schemes for use in nuclear safety analysis codes[J]. International Journal of Multiphase Flow,2017,93:17-32.
|
[19] |
徐朝阳, 孟英峰, 魏纳, 等. 一维气液两相漂移模型的AUSMV算法研究[J]. 应用数学和力学, 2014,35(12): 1373-1382.(XU Chaoyang, MENG Yingfeng, WEI Na, et al. Research on the AUSMV scheme for 1D gas liquid two phase flow drift flux models[J]. Applied Mathematics and Mechanics,2014,35(12): 1373-1382.(in Chinese))
|
[20] |
MADHU K. Sixth order Newton-type method for solving system of nonlinear equations and its applications[J].Applied Mathematics E: Notes,2017,17: 221-230.
|
[21] |
FLTTEN T, MUNKEJORD S T. The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model[J]. ESAIM: Mathematical Modelling and Numerical Analysis,2006,40(4): 735-764.
|