Citation: | ZHOU Tao, SONG Yanqi. Shear Effect Analysis on Plates Based on the 4-Variable Refined Plate Theory[J]. Applied Mathematics and Mechanics, 2018, 39(11): 1268-1281. doi: 10.21656/1000-0887.390066 |
[1] |
SHIMPI R P, PATEL H G. A two variable refined plate theory for orthotropic plate analysis[J]. International Journal of Solids & Structures,2006,43(22): 6783-6799.
|
[2] |
REISSNER E. The effect of transverse shear deformation on the bending of elastic plates[J]. Journal of Applied Mechanics,1945,12(3): 69-77.
|
[3] |
MINDLIN R D. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates[J]. Journal of Applied Mechanics,1951,18(1): 31-38.
|
[4] |
LIBRESCU L. On the theory of anisotropic elastic shells and plates[J]. International Journal of Solids & Structures,1967,3(1): 53-68.
|
[5] |
LEWIS-DUARTE M, BLIGH M C. An accurate, simple theory of the statics and dynamics of elastic plates[J]. Mechanics Research Communications,1980,7(6): 343-350.
|
[6] |
REDDY J N. A refined nonlinear theory of plates with transverse shear deformation[J]. International Journal of Solids & Structures,1984,20(9): 881-896.
|
[7] |
REDDY J N. A general non-linear third-order theory of plates with moderate thickness[J]. International Journal of Non-Linear Mechanics,1990,25(6): 677-686.
|
[8] |
TIMOSHENKO S P. Strength of Materials, Part I: Elementary Theory and Problems [M]. New York: Van Nostrand, 1940.
|
[9] |
DONNELL L H. Discussion of paper by Reissner E: the effect of transverse shear deformation on the bending of elastic plates[J]. Journal of Applied Mechanics-Transactions of the Asme,1946,68: 249-252.
|
[10] |
DAVIDSON T, MEIER J H. Impact on prismatic bars[J]. Proc SESA,1946,4: 88-111.
|
[11] |
ANDERSON R A. Flexural vibrations in uniform beams according to the Timoshenko theory[J]. Journal of Applied Mechanics-Transactions of the Asme,1953,20(4): 504-510.
|
[12] |
JACOBSEN L S. Engineering Vibrations: With Applications to Structures and Machinery [M]. Mcgraw-Hall Book Company, Inc, 1958.
|
[13] |
HUFFINGTON N J. Response of elastic columns to axial pulse loading[J]. AIAA Journal,1963,1(9): 2099-2104.
|
[14] |
ALLEN H G, NEAL B G. Analysis and Design of Structural Sandwich Panels [M]. Berlin: Pergamon Press, 1969.
|
[15] |
MURTY A V K. Flexure of composite plates[J]. Composite Structures,1987,7(3): 161-177.
|
[16] |
SENTHILNATHAN N R, LIM S P, LEE K H, et al. Buckling of shear-deformable plates[J]. AIAA Journal,1987,25(9): 1268-1271.
|
[17] |
ZENKERT D. An Introduction to Sandwich Construction [M]. London: Chamelon Press, 1995.
|
[18] |
HAN S C, YOON S H, CHANG S Y. Bending and dynamic characteristics of antisymmetric laminated composite plates considering a simplified higherorder shear deformation[J]. J KSSC, 1997,9(4): 601-609.(in Korean).
|
[19] |
SHIMPI R P. Refined plate theory and its variants[J]. AIAA Journal,2002,40(1): 137-146.
|
[20] |
SENJANOVIC I,CATIPOVIC I, TOMASEVIC S. Coupled flexural and torsional vibrations of ship-like girders[J]. Thin-Walled Structures,2007,45(12): 1002-1021.
|
[21] |
SENJANOVIC I, TOMASEVIC S, VLADIMIR N. An advanced theory of thin-walled girders with application to ship vibrations[J]. Marine Structures,2009,22(3): 387-437.
|
[22] |
VO T P, THAI H T. Static behavior of composite beams using various refined shear deformation theories[J]. Composite Structures,2012,94(8): 2513-2522.
|
[23] |
THAI H T, VO T P. A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates[J]. Applied Mathematical Modelling,2013,37(5): 3269-3281.
|
[24] |
ENDO M, KIMURA N. An alternative formulation of the boundary value problem for the Timoshenko beam and Mindlin plate[J]. Journal of Sound & Vibration,2007,301(1): 355-373.
|
[25] |
SHIMPI R P, PATEL H G, ARYA H. New first-order shear deformation plate theories[J]. Journal of Applied Mechanics,2007,74(3): 523-533.
|
[26] |
THAI H T, CHOI D H. A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates[J]. Composite Structures,2013,101(15): 332-340.
|
[27] |
THAI H T, CHOI D H. A simple first-order shear deformation theory for laminated composite plates[J]. Composite Structures,2013,106(12): 754-763.
|
[28] |
KOAKOWSKI Z, KRLAK M. Modified continuity conditions of plates in beam-column using the Mindlin plate theory[J]. Thin-Walled Structures,2014,74(1): 261-268.
|
[29] |
ENDO M. An alternative first-order shear deformation concept and its application to beam, plate and cylindrical shell models[J]. Composite Structures,2016,146: 50-61.
|
[30] |
ENDO M. Study on an alternative deformation concept for the Timoshenko beam and Mindlin plate models[J]. International Journal of Engineering Science,2015,87: 32-46.
|
[31] |
ENDO M. “One-half order shear deformation theory” as a new naming for the transverse, but not in-plane rotational, shear deformable structural models[J]. International Journal of Mechanical Sciences,2017,122: 384-391.
|
[32] |
HAN S C, PARK W T, JUNG W Y. A four-variable refined plate theory for dynamic stability analysis of S-FGM plates based on physical neutral surface[J]. Composite Structures,2015,131:1081-1089.
|
[33] |
哈吉 L, 艾特阿特曼 H A, 杜尼斯 A, 等. 应用4变量精确平板理论分析FG复合板的自由振动[J]. 应用数学和力学, 2011,32(7): 866-882. (HADJI L, ATMANE H A, TOUNSI A, et al. Free vibration of functionally graded sandwich plates using four-variable refined plate theory[J]. Applied Mathematics and Mechanics,2011,32(7): 866-882.(in Chinese))
|
[34] |
MECHAB I, ATMANE H A, TOUNSI A, et al. A two variable refined plate theory for the bending analysis of functionally graded plates[J]. Acta Mechanica Sinica,2010,26(6): 941-949.
|
[35] |
THAI H T, NGUYEN T K, VO T P, et al. A new simple shear deformation plate theory[J]. Composite Structures,2017,171: 277-285.
|