Citation: | XU Weizheng, WU Weiguo. Precision Analysis of the 3rd-Order WENO-Z Scheme and Its Improved Scheme[J]. Applied Mathematics and Mechanics, 2018, 39(8): 946-960. doi: 10.21656/1000-0887.390011 |
[1] |
LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics,1994,115(1): 200-212.
|
[2] |
HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, III [M]//HUSSAINI M Y, VAN LEER B, VAN ROSENDALE J, ed. Upwind and High-Resolution Schemes . Berlin, Heidelberg: Springer, 1987: 218-290.
|
[3] |
JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics,1995,126(1): 202-228.
|
[4] |
HSIEH T J, WANG C H, YANG J Y. Numerical experiments with several variant WENO schemes for the Euler equations[J]. International Journal for Numerical Methods in Fluids,2008,58(9): 1017-1039.
|
[5] |
ZHAO S, LARDJANE N, FEDIOUN I. Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows[J]. Computes & Fluids,2014,95(3): 74-87.
|
[6] |
WANG C, DING J X, SHU C W, et al. Three-dimensional ghost-fluid large-scale numerical investigation on air explosion[J]. Computes & Fluids,2016,137: 70-79.
|
[7] |
ZAGHI S, MASCIO A D, FAVINI B. Application of WENO-positivity-preserving schemes to highly under-expanded jets[J]. Journal of Scientific Computing,2016,69(3): 1-25.
|
[8] |
HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points[J]. Journal of Computational Physics,2005,207(2): 542-567.
|
[9] |
BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics,2008,227(6): 3191-3211.
|
[10] |
YAMALEEV N K, CARPENTER M H. A systematic methodology for constructing high-order energy stable WENO schemes[J]. Journal of Computational Physics,2009,228(11): 4248-4272.
|
[11] |
FAN P. High order weighted essentially nonoscillatory WENO-η schemes for hyperbolic conservation laws[J].Journal of Computational Physics,2014,269(1): 355-385.
|
[12] |
FAN P, SHEN Y, TIAN B, et al. A new smoothness indicator for improving the weighted essentially non-oscillatory scheme[J].Journal of Computational Physics,2014,269(10): 329-354.
|
[13] |
FENG H, HUANG C, WANG R. An improved mapped weighted essentially non-oscillatory scheme[J]. Applied Mathematics & Computation,2014,232(6): 453-468.
|
[14] |
SHEN Y, ZHA G. Improvement of weighted essentially non-oscillatory schemes near discontinuities[J]. Computes & Fluids,2014,96(12): 1-9.
|
[15] |
CHANG H K, HA Y, YOON J. Modified non-linear weights for fifth-order weighted essentially non-oscillatory schemes[J].Journal of Scientific Computing,2016,67(1): 299-323.
|
[16] |
MA Y, YAN Z, ZHU H. Improvement of multistep WENO scheme and its extension to higher orders of accuracy[J].International Journal for Numerical Methods in Fluids,2016,82(12): 818-838.
|
[17] |
WANG R, FENG H, HUANG C. A new mapped weighted essentially non-oscillatory method using rational mapping function[J]. Journal of Scientific Computing,2016,67(2): 540-580.
|
[18] |
YAMALEEV N K, CARPENTER M H. Third-order energy stable WENO scheme[J]. Journal of Computational Physics,2013,228(8): 3025-3047.
|
[19] |
WU Xiaoshuai, ZHAO Yuxin. A high-resolution hybrid scheme for hyperbolic conservation laws[J]. International Journal for Numerical Methods in Fluids,2015,78(3): 162-187.
|
[20] |
DON W S, BORGES R. Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes[J].Journal of Computational Physics,2013,250: 347-372.
|
[21] |
HU X Y, WANG Q, ADAMS N A. An adaptive central-upwind weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics,2010,229(23): 8952-8965.
|
[22] |
WU X, LIANG J, ZHAO Y. A new smoothness indicator for third-order WENO scheme[J]. International Journal for Numerical Methods in Fluids,2016,81(7): 451-459.
|
[23] |
GANDE N R, RATHOD Y, RATHAN S. Third-order WENO scheme with a new smoothness indicator[J]. International Journal for Numerical Methods in Fluids,2017,85(2): 171-185.
|
[24] |
SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes, II[J]. Journal of Computational Physics,1989,83(1): 32-78.
|
[25] |
SOD G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics,1978,27(1): 1-31.
|
[26] |
TITAREV V A, TORO E F. Finite-volume WENO schemes for three-dimensional conservation laws[J]. Journal of Computational Physics,2004,201(1): 238-260.
|
[27] |
SHI J, ZHANG Y T, SHU C W. Resolution of high order WENO schemes for complicated flow structures[J]. Journal of Computational Physics,2003,186(2): 690-696.
|
[28] |
ACKER F, BORGES R, COSTA B. An improved WENO-Z scheme[J]. Journal of Computational Physics,2016,313: 726-753.
|
[29] |
LAX P D, LIU X D. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes[J]. SIAM Journal on Scientific Computing,1998,19(2): 319-340.
|