JIANG Lin, SUN Yuhuai, ZHANG Xue, HONG Yun. Exact Traveling Wave Solutions and Bifurcations of (2+1)-Dimensional Space-Time Fractional-Order Nizhnik-Novikov-Veslov Equations[J]. Applied Mathematics and Mechanics, 2018, 39(11): 1313-1322. doi: 10.21656/1000-0887.380299
Citation: JIANG Lin, SUN Yuhuai, ZHANG Xue, HONG Yun. Exact Traveling Wave Solutions and Bifurcations of (2+1)-Dimensional Space-Time Fractional-Order Nizhnik-Novikov-Veslov Equations[J]. Applied Mathematics and Mechanics, 2018, 39(11): 1313-1322. doi: 10.21656/1000-0887.380299

Exact Traveling Wave Solutions and Bifurcations of (2+1)-Dimensional Space-Time Fractional-Order Nizhnik-Novikov-Veslov Equations

doi: 10.21656/1000-0887.380299
Funds:  The National Natural Science Foundation of China(11371267)
  • Received Date: 2017-12-05
  • Rev Recd Date: 2018-05-13
  • Publish Date: 2018-11-01
  • The (2+1)-dimensional space-time fractional-order Nizhnik-Novikov-Veslov equations were transformed into ordinary differential equations through the fractional complex transform, then the Hamiltonian and the bifurcation phase portraits for the corresponding plane system to the equations were got with the bifurcation method for dynamical systems. According to the tracks in the phase portraits, solitary wave solutions, blow-up wave solutions, periodic wave solutions and periodic blow-up wave solutions to the equations were obtained. Relations between the traveling wave solutions were also discussed.
  • loading
  • [1]
    MILLER K S, ROSS B. An Introduction to the Fractional Calculus and Fractional Differential Equations [M]. New York: Wiley, 1993.
    [2]
    PODLUBNY I. Fractional Differential Equations [M]. San Diego: Academic Press, 1999.
    [3]
    KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations [M]. San Diego: Elsevier, 2006.
    [4]
    ZHOU Y B, WANG M L, WANG Y M. Periodic wave solution to a coupled KdV equations with variable coefficients[J]. Physics Letters A,2003,308(1): 31-36.
    [5]
    FAN E G. Extended tanh-function method and its applications to nonlinear equations[J]. Physics Letters A,2000,277(4): 212-218.
    [6]
    HE J H. Exp-function method for fractional differential equations[J]. International Journal of Nonlinear Sciences and Numerical Simulation,2013,14(6): 363-366.
    [7]
    FENG Q, MENG F. Explicit solutions for space-time fractional partial differential equations in mathematical physics by a new generalized fractional Jacobi elliptic equation-based sub-equation method[J]. Optik-International Journal for Light and Electron Optics,2016,127(19): 7450-7458.
    [8]
    WANG M L, LI X Z, ZHANG J L. The G′/G-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J]. Physics Letters A,2007,372(4): 417-423.
    [9]
    石兰芳, 聂子文. 应用全新G′/(G+G′)-展开方法求解广义非线性Schrodinger方程和耦合非线性Schrodinger方程组[J]. 应用数学和力学, 2017,38(5): 539-552.(SHI Lanfang, NIE Ziwen. Solutions to the nonlinear Schrodinger equation and coupled nonlinear Schrodinger equations with a new G′/(G+G′)-expansion method[J]. Applied Mathematics and Mechanics,2017,38(5): 539-552.(in Chinese)).
    [10]
    冯再勇, 陈宁. 解分数阶微分代数系统的Adomian分解方法[J]. 应用数学和力学, 2015,36(11): 1211-1218.(FENG Zaiyong, CHEN Ning. On the solution of fractional differential-algebraic systems with the Adomian decomposition method[J]. Applied Mathematics and Mechanics,2015,36(11): 1211-1218.(in Chinese)).
    [11]
    HIROTA R, SATSUMA J. Soliton solution of a coupled KdV equation[J]. Physics Letters A,1981,85: 407-408.
    [12]
    LI B, CHEN Y, ZHANG H Q. Auto-backlund transformations and exact solutions for the generalized two-dimensional Korteweg-de Vries-Burgers-type equations and Burgers-type equations[J]. Zeischrift fur Naturforschung A,2003,58(7/8): 464-472.
    [13]
    YANG X J, BALEANU D. Fractal heat conduction problem solved by local fractional variation iteration method[J]. Thermal Science,2013,17(2): 625-628.
    [14]
    ZHENG B. Exact solutions for some fractional partial differential equations by the G′/G method[J]. Mathematical Problems in Engineering,2013,43(3): 114-136.
    [15]
    JUMARIE G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results[J]. Computers and Mathematics With Applications,2006,51(9): 1367-1376.
    [16]
    JIA S M, HU M S, CHEN Q L, et al. Exact solution of fractional Nizhnik-Novikov-Veselov equation[J]. Thermal Science,2014,18(5): 1716-1717.
    [17]
    MIRZAZADEH M, EKICI M, SONMEZOGLU A, et al. Soliton solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics[J]. European Physical Journal Plus,2016,131(5): 1-11.
    [18]
    FENG Q. A new analytical method for seeking traveling wave solutions of space-time fractional partial differential equations arising in mathematical physics[J]. Optik-International Journal for Light and Electron Optics,2017,130: 310-323.
    [19]
    ZHENG B, WEN C. Exact solutions for fractional partial differential equations by a new fractional sub-equation method[J]. Advances in Difference Equations,2013,2013(1): 199-211.
    [20]
    LI J B, LIU Z R. Smooth and non-smooth traveling waves in a nonlinearly dispersive equation[J]. Applied Mathematical Modelling,2000,25(1): 41-56.
    [21]
    冯大河, 李继彬. Jaulent-Miodek方程的行波解分支[J]. 应用数学和力学, 2007,28(8): 894-900.(FENG Dahe, LI Jibin. Bifurcations of travelling wave solutions for Jaulent-Miodek equaions[J]. Applied Mathematics and Mechanics,2007,28(8): 894-900.(in Chinese))
    [22]
    LI J B. Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions [M]. Beijing: Science Press, 2013.
    [23]
    刘正荣. 微分方程定性方法和数值模拟[M]. 广州: 华南理工大学出版社, 2013.(LIU Zhengrong. The Qualitative Methods and Numerical Simulations of Differential Equations [M]. Guangzhou: South China University of Technology Press, 2013.(in Chinese))
    [24]
    HE J H, LI Z B. Converting fractional differential equations into partial differential equations[J]. Thermal Science,2012,16(2): 331-334.
    [25]
    LI Z B, ZHU W H, HE J H. Exact solutions of time-fractional heat conduction equation by the fractional complex transform[J]. Thermal Science,2012,16(2): 335-338.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1128) PDF downloads(586) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return