ZHENG Mingliang, FENG Xian, LI Wenxia, CAO Yalin. Study on Symmetries and Conserved Quantities of Mechanical Multibody System Collision Dynamics[J]. Applied Mathematics and Mechanics, 2018, 39(11): 1292-1299. doi: 10.21656/1000-0887.380291
Citation: ZHENG Mingliang, FENG Xian, LI Wenxia, CAO Yalin. Study on Symmetries and Conserved Quantities of Mechanical Multibody System Collision Dynamics[J]. Applied Mathematics and Mechanics, 2018, 39(11): 1292-1299. doi: 10.21656/1000-0887.380291

Study on Symmetries and Conserved Quantities of Mechanical Multibody System Collision Dynamics

doi: 10.21656/1000-0887.380291
  • Received Date: 2017-11-21
  • Rev Recd Date: 2018-03-17
  • Publish Date: 2018-11-01
  • To provide a powerful new tool for quantitative and qualitative analysis of collision dynamics in complex mechanical multibody systems, the symmetry theory in modern analytical mechanics was introduced into the study of mechanical multibody external collision dynamics. Firstly, the Euler-Lagrange equation of collision dynamics was derived based on the momentum method; secondly, the group theory was introduced, then, according to the invariance principle, the condition equations for the Noether symmetry and the Lie symmetry were obtained and the corresponding conserved quantity form was got, which made possible an effective approach to the analytic integral theory for dynamic equations. Finally, the collision dynamics of a planar open-loop 2-connecting-rod mechanism was taken as an example for application and analysis. Research shows that deeper mechanical laws and motion characteristics of mechanical multibody system collision dynamics can be obtained by means of symmetries and conserved quantities, and the results also lay a theoretical foundation for more precise dynamic optimal design and advanced control.
  • loading
  • [1]
    吴洪涛, 熊有伦. 机械工程中的多体系统动力学问题[J]. 中国机械工程, 2000,11(8): 608-610.(WU Hongtao, XIONG Youlun. Multibody system dynamics problems in mechanical engineering[J]. China Mechanical Engineering, 2000,11(8): 608-610.(in Chinese))
    [2]
    尤超蓝, 洪嘉振. 空间交会对接过程的动力学模型与仿真[J]. 动力学与控制学报, 2004,2(2): 23-28.(YOU Chaolan, HONG Jiazhen. Dynamic model and simulation of space rendezvous and docking procedure[J]. Journal of Dynamics and Control,2004,2(2): 23-28.(in Chinese))
    [3]
    刘锦阳, 洪嘉振. 卫星太阳能帆板的撞击问题[J]. 宇航学报, 2000,21(3): 34-38.(LIU Jingyang, HONG Jiazhen. Contact-impact of satellite’s plates[J]. Journal of Astronautics,2000,21(3): 34-38.(in Chinese))
    [4]
    邹元杰, 韩增尧, 白照广, 等. 航天器柔性多体结构锁定撞击动力学分析与试验验证[J]. 强度与环境, 2011,38(1): 42-51.(ZHOU Yuanjie, HAN Zengyao, BAI Zhaoguang, et al. Impact analysis and test verification of flexible multi-body spacecraft structures in the latching process[J]. Structure & Environment Engineering, 2011,38(1): 42-51.(in Chinese))
    [5]
    杨晓谦. 运输过程中堆码包装件碰撞分析[D]. 硕士学位论文. 无锡: 江南大学, 2011.(YANG Xiaoqian. The transport process of stacking package collision analysis[D]. Master Thesis. Wuxi: Jiangnan University, 2011.(in Chinese))
    [6]
    陈钢, 贾庆轩, 孙汉旭, 等. 空间机器人目标捕获过程中碰撞运动分析[J]. 机器人, 2010,3(1): 432-438.(CHEN Gang, JIA Qingxuan, SUN Hanxu, et al. Analysis on impact motion of space robot in the object capturing process[J]. Robot,2010,3(1): 432-438.(in Chinese))
    [7]
    华卫江, 章定国. 柔性机器人系统碰撞动力学建模[J]. 机械工程学报, 2008,43(12): 222-228.(HUA Weijiang, ZHANG Dingguo. Modeling of impact dynamics of flexible robots[J]. Journal of Mechanical Engineering,2008,43(12): 222-228.(in Chinese))
    [8]
    解江, 李翰, 周书婷, 等. 爆炸冲击载荷下航空铝合金平板动态响应数值分析方法[J]. 应用数学和力学, 2017,38(4): 410-420.(XIE Jiang, LI Han, ZHOU Shuting, et al. A numerical method for dynamic responses of aviation aluminum alloy plates under blast loads[J]. Applied Mathematics and Mechanics,2017,38(4): 410-420.(in Chinese))
    [9]
    秦于越, 邓子辰, 胡伟鹏. 偏心冲击荷载作用下薄圆板动力学响应的保结构分析[J]. 应用数学和力学, 2014,35(8): 410-420.(QIN Yuyue, DENG Zichen, HU Weipeng. Dynamic analysis of circular thin plates under eccentric impact load with the structure-preserving method[J]. Applied Mathematics and Mechanics,2014,35(8): 410-420.(in Chinese))
    [10]
    STRONGE W J. Impact Mechanics [M]. Cambridge: Cambridge University Press, 2000.
    [11]
    SEIFRIED R, SCHIEHLEN W, EBERHARD P. Numerical and experimental evaluation of the coefficient of restitution for repeated impacts[J]. International Journal of Impact Engineering,2005,32(1): 508-524.
    [12]
    AMBROSIO J, POMBO J, RAUTER F, et al. A memory based communication in the co-simulation of multibody and finite element codes for pantograph-catenary interaction simulation[J]. Multibody Dynamics,2009,12: 231-252.
    [13]
    董富祥, 洪嘉振. 多体系统动力学碰撞问题研究综述[J]. 力学进展, 2009,39(3): 352-359.(DONG Fuxiang, HONG Jiazhen. Review of impact problem for dynamics of multibody system[J]. Progress in Mechanics,2009,39(3): 352-359.(in Chinese))
    [14]
    LEONE R, GOURIEUX T. Classical Noether’s theory with application to the linearly damped particle[J]. European Journal of Physics,2015,36(6): 065022.
    [15]
    BALSEIRO P. Hamiltonization of solids of revolution through reduction[J]. Journal of Nonlinear Science,2017,27(6): 2001-2035.
    [16]
    SINGLA K, GUPTA R K. Conservation laws for certain time fractional nonlinear systems of partial differential equations[J]. Communications in Nonlinear Science and Numerical Simulation,2017,53: 10-21.
    [17]
    章定国. 多刚体系统的外碰撞动力学方程[J]. 应用数学和力学, 1997,18(6): 551-555.(ZHANG Dingguo. Exterior collision dynamic equations of multi rigid body system[J]. Applied Mathematics and Mechanics,1997,18(6): 551-555.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1460) PDF downloads(802) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return